Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 63

1.

Ultrasound-mediated delivery of siESE complexed with microbubbles attenuates HER2+/- cell line proliferation and tumor growth in rodent models of breast cancer.

Song KH, Trudeau T, Kar A, Borden MA, Gutierrez-Hartmann A.

Nanotheranostics. 2019 May 13;3(2):212-222. doi: 10.7150/ntno.31827. eCollection 2019.

2.

Pre-clinical assessment of a water-in-fluorocarbon emulsion for the treatment of pulmonary vascular diseases.

Ferguson SK, Pak DI, Hopkins JL, Harral JW, Redinius KM, Loomis Z, Stenmark KR, Borden MA, Schroeder T, Irwin DC.

Drug Deliv. 2019 Dec;26(1):147-157. doi: 10.1080/10717544.2019.1568621.

3.

Effect of Hydrostatic Pressure, Boundary Constraints and Viscosity on the Vaporization Threshold of Low-Boiling-Point Phase-Change Contrast Agents.

Rojas JD, Borden MA, Dayton PA.

Ultrasound Med Biol. 2019 Apr;45(4):968-979. doi: 10.1016/j.ultrasmedbio.2018.11.006. Epub 2019 Jan 16.

PMID:
30658858
4.

Intermolecular Forces Model for Lipid Microbubble Shells.

Borden MA.

Langmuir. 2018 Dec 28. doi: 10.1021/acs.langmuir.8b03641. [Epub ahead of print]

PMID:
30543753
5.

Biological active matter aggregates: Inspiration for smart colloidal materials.

Vernerey FJ, Benet E, Blue L, Fajrial AK, Lalitha Sridhar S, Lum JS, Shakya G, Song KH, Thomas AN, Borden MA.

Adv Colloid Interface Sci. 2019 Jan;263:38-51. doi: 10.1016/j.cis.2018.11.006. Epub 2018 Nov 22. Review.

PMID:
30504078
6.

Reverse engineering the ultrasound contrast agent.

Borden MA, Song KH.

Adv Colloid Interface Sci. 2018 Dec;262:39-49. doi: 10.1016/j.cis.2018.10.004. Epub 2018 Oct 24. Review.

PMID:
30396507
7.

State-of-the-art of microbubble-assisted blood-brain barrier disruption.

Song KH, Harvey BK, Borden MA.

Theranostics. 2018 Aug 7;8(16):4393-4408. doi: 10.7150/thno.26869. eCollection 2018. Review.

8.

Plane-Wave Contrast Imaging: A Radiation Force Point of View.

Blue LM, Guidi F, Vos HJ, Slagle CJ, Borden MA, Tortoli P.

IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Dec;65(12):2296-2300. doi: 10.1109/TUFFC.2018.2847899. Epub 2018 Jun 15.

PMID:
29994658
9.

Oxygen microbubbles improve radiotherapy tumor control in a rat fibrosarcoma model - A preliminary study.

Fix SM, Papadopoulou V, Velds H, Kasoji SK, Rivera JN, Borden MA, Chang S, Dayton PA.

PLoS One. 2018 Apr 9;13(4):e0195667. doi: 10.1371/journal.pone.0195667. eCollection 2018.

10.

Click Conjugation of Cloaked Peptide Ligands to Microbubbles.

Slagle CJ, Thamm DH, Randall EK, Borden MA.

Bioconjug Chem. 2018 May 16;29(5):1534-1543. doi: 10.1021/acs.bioconjchem.8b00084. Epub 2018 Apr 11.

PMID:
29614859
11.

Photoacoustic technique to measure temperature effects on microbubble viscoelastic properties.

Lum JS, Stobbe DM, Borden MA, Murray TW.

Appl Phys Lett. 2018 Mar 12;112(11):111905. doi: 10.1063/1.5005548. Epub 2018 Mar 14.

12.

Hydrostatic Pressurization of Lung Surfactant Microbubbles: Observation of a Strain-Rate Dependent Elasticity.

Thomas AN, Borden MA.

Langmuir. 2017 Nov 28;33(47):13699-13707. doi: 10.1021/acs.langmuir.7b03307. Epub 2017 Nov 7.

PMID:
29064252
13.

Microbubble gas volume: A unifying dose parameter in blood-brain barrier opening by focused ultrasound.

Song KH, Fan AC, Hinkle JJ, Newman J, Borden MA, Harvey BK.

Theranostics. 2017 Jan 1;7(1):144-152. doi: 10.7150/thno.15987. eCollection 2017.

14.

Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography.

Sheeran PS, Matsuura N, Borden MA, Williams R, Matsunaga TO, Burns PN, Dayton PA.

IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jan;64(1):252-263. doi: 10.1109/TUFFC.2016.2619685. Epub 2016 Oct 20.

15.

On the thermodynamics and kinetics of superheated fluorocarbon phase-change agents.

Mountford PA, Borden MA.

Adv Colloid Interface Sci. 2016 Nov;237:15-27. doi: 10.1016/j.cis.2016.08.007. Epub 2016 Aug 18.

PMID:
27574721
16.

Single Microbubble Measurements of Lipid Monolayer Viscoelastic Properties for Small-Amplitude Oscillations.

Lum JS, Dove JD, Murray TW, Borden MA.

Langmuir. 2016 Sep 20;32(37):9410-7. doi: 10.1021/acs.langmuir.6b01882. Epub 2016 Sep 2.

17.

High Efficiency Molecular Delivery with Sequential Low-Energy Sonoporation Bursts.

Song KH, Fan AC, Brlansky JT, Trudeau T, Gutierrez-Hartmann A, Calvisi ML, Borden MA.

Theranostics. 2015 Oct 18;5(12):1419-27. doi: 10.7150/thno.13033. eCollection 2015.

18.

Fluorocarbon nanodrops as acoustic temperature probes.

Mountford PA, Smith WS, Borden MA.

Langmuir. 2015 Oct 6;31(39):10656-63. doi: 10.1021/acs.langmuir.5b02308. Epub 2015 Sep 30.

PMID:
26359919
19.

Therapeutic gas delivery via microbubbles and liposomes.

Fix SM, Borden MA, Dayton PA.

J Control Release. 2015 Jul 10;209:139-49. doi: 10.1016/j.jconrel.2015.04.027. Epub 2015 Apr 23. Review.

PMID:
25913365
20.

Thermal activation of superheated lipid-coated perfluorocarbon drops.

Mountford PA, Thomas AN, Borden MA.

Langmuir. 2015 Apr 28;31(16):4627-34. doi: 10.1021/acs.langmuir.5b00399. Epub 2015 Apr 15.

PMID:
25853278
21.

Ultrasound-modulated fluorescence based on donor-acceptor-labeled microbubbles.

Liu Y, Feshitan JA, Wei MY, Borden MA, Yuan B.

J Biomed Opt. 2015 Mar;20(3):036012. doi: 10.1117/1.JBO.20.3.036012.

22.

Evaluation of peritoneal microbubble oxygenation therapy in a rabbit model of hypoxemia.

Legband ND, Feshitan JA, Borden MA, Terry BS.

IEEE Trans Biomed Eng. 2015 May;62(5):1376-82. doi: 10.1109/TBME.2015.2388611. Epub 2015 Jan 6.

PMID:
25576562
23.

Engineering optically triggered droplets for photoacoustic imaging and therapy.

Dove JD, Mountford PA, Murray TW, Borden MA.

Biomed Opt Express. 2014 Nov 26;5(12):4417-27. doi: 10.1364/BOE.5.004417. eCollection 2014 Dec 1.

24.

Ultrasound-modulated fluorescence based on fluorescent microbubbles.

Liu Y, Feshitan JA, Wei MY, Borden MA, Yuan B.

J Biomed Opt. 2014 Aug;19(8):085005. doi: 10.1117/1.JBO.19.8.085005.

25.

Optically induced resonance of nanoparticle-loaded microbubbles.

Dove JD, Borden MA, Murray TW.

Opt Lett. 2014 Jul 1;39(13):3732-5. doi: 10.1364/OL.39.003732.

PMID:
24978723
26.

Condensation phase diagrams for lipid-coated perfluorobutane microbubbles.

Mountford PA, Sirsi SR, Borden MA.

Langmuir. 2014 Jun 3;30(21):6209-18. doi: 10.1021/la501004u. Epub 2014 May 21.

PMID:
24824162
27.

Systemic oxygen delivery by peritoneal perfusion of oxygen microbubbles.

Feshitan JA, Legband ND, Borden MA, Terry BS.

Biomaterials. 2014 Mar;35(9):2600-6. doi: 10.1016/j.biomaterials.2013.12.070. Epub 2014 Jan 15.

PMID:
24439406
28.

State-of-the-art materials for ultrasound-triggered drug delivery.

Sirsi SR, Borden MA.

Adv Drug Deliv Rev. 2014 Jun;72:3-14. doi: 10.1016/j.addr.2013.12.010. Epub 2013 Dec 31. Review.

29.

Single-particle optical sizing of microbubbles.

Satinover SJ, Dove JD, Borden MA.

Ultrasound Med Biol. 2014 Jan;40(1):138-47. doi: 10.1016/j.ultrasmedbio.2013.08.018. Epub 2013 Oct 18.

PMID:
24139917
30.
31.

The effect of lipid monolayer in-plane rigidity on in vivo microbubble circulation persistence.

Garg S, Thomas AA, Borden MA.

Biomaterials. 2013 Sep;34(28):6862-70. doi: 10.1016/j.biomaterials.2013.05.053. Epub 2013 Jun 17.

32.

Lung surfactant microbubbles increase lipophilic drug payload for ultrasound-targeted delivery.

Sirsi SR, Fung C, Garg S, Tianning MY, Mountford PA, Borden MA.

Theranostics. 2013 May 20;3(6):409-19. doi: 10.7150/thno.5616. Print 2013.

33.

Advances in ultrasound mediated gene therapy using microbubble contrast agents.

Sirsi SR, Borden MA.

Theranostics. 2012;2(12):1208-22. doi: 10.7150/thno.4306. Epub 2012 Dec 31. Review.

34.

Theranostic oxygen delivery using ultrasound and microbubbles.

Kwan JJ, Kaya M, Borden MA, Dayton PA.

Theranostics. 2012;2(12):1174-84. doi: 10.7150/thno.4410. Epub 2012 Dec 23.

35.

Magnetic resonance properties of Gd(III)-bound lipid-coated microbubbles and their cavitation fragments.

Feshitan JA, Boss MA, Borden MA.

Langmuir. 2012 Oct 30;28(43):15336-43. doi: 10.1021/la303283y. Epub 2012 Oct 17.

PMID:
23045962
36.

Lipid monolayer collapse and microbubble stability.

Kwan JJ, Borden MA.

Adv Colloid Interface Sci. 2012 Nov 15;183-184:82-99. doi: 10.1016/j.cis.2012.08.005. Epub 2012 Aug 21. Review.

PMID:
22959721
37.

Microbubbles as biocompatible porogens for hydrogel scaffolds.

Lima EG, Durney KM, Sirsi SR, Nover AB, Ateshian GA, Borden MA, Hung CT.

Acta Biomater. 2012 Dec;8(12):4334-41. doi: 10.1016/j.actbio.2012.07.007. Epub 2012 Aug 3.

38.

Oxygen gas-filled microparticles provide intravenous oxygen delivery.

Kheir JN, Scharp LA, Borden MA, Swanson EJ, Loxley A, Reese JH, Black KJ, Velazquez LA, Thomson LM, Walsh BK, Mullen KE, Graham DA, Lawlor MW, Brugnara C, Bell DC, McGowan FX Jr.

Sci Transl Med. 2012 Jun 27;4(140):140ra88. doi: 10.1126/scitranslmed.3003679.

39.

Contrast ultrasound imaging for identification of early responder tumor models to anti-angiogenic therapy.

Sirsi SR, Flexman ML, Vlachos F, Huang J, Hernandez SL, Kim HK, Johung TB, Gander JW, Reichstein AR, Lampl BS, Wang A, Hielscher AH, Kandel JJ, Yamashiro DJ, Borden MA.

Ultrasound Med Biol. 2012 Jun;38(6):1019-29. doi: 10.1016/j.ultrasmedbio.2012.01.014. Epub 2012 Mar 16.

40.

Monitoring early tumor response to drug therapy with diffuse optical tomography.

Flexman ML, Vlachos F, Kim HK, Sirsi SR, Huang J, Hernandez SL, Johung TB, Gander JW, Reichstein AR, Lampl BS, Wang A, Borden MA, Yamashiro DJ, Kandel JJ, Hielscher AH.

J Biomed Opt. 2012 Jan;17(1):016014. doi: 10.1117/1.JBO.17.1.016014.

41.

Effect of surface architecture on in vivo ultrasound contrast persistence of targeted size-selected microbubbles.

Chen CC, Sirsi SR, Homma S, Borden MA.

Ultrasound Med Biol. 2012 Mar;38(3):492-503. doi: 10.1016/j.ultrasmedbio.2011.12.007.

42.

The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice.

Tung YS, Vlachos F, Feshitan JA, Borden MA, Konofagou EE.

J Acoust Soc Am. 2011 Nov;130(5):3059-67. doi: 10.1121/1.3646905.

43.

Theranostic Gd(III)-lipid microbubbles for MRI-guided focused ultrasound surgery.

Feshitan JA, Vlachos F, Sirsi SR, Konofagou EE, Borden MA.

Biomaterials. 2012 Jan;33(1):247-55. doi: 10.1016/j.biomaterials.2011.09.026. Epub 2011 Oct 10.

44.

Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors.

Sirsi SR, Hernandez SL, Zielinski L, Blomback H, Koubaa A, Synder M, Homma S, Kandel JJ, Yamashiro DJ, Borden MA.

J Control Release. 2012 Jan 30;157(2):224-34. doi: 10.1016/j.jconrel.2011.09.071. Epub 2011 Sep 17.

45.

The role of poly(ethylene glycol) brush architecture in complement activation on targeted microbubble surfaces.

Chen CC, Borden MA.

Biomaterials. 2011 Sep;32(27):6579-87. doi: 10.1016/j.biomaterials.2011.05.027. Epub 2011 Jun 17.

46.

Effect of anesthesia carrier gas on in vivo circulation times of ultrasound microbubble contrast agents in rats.

Mullin L, Gessner R, Kwan J, Kaya M, Borden MA, Dayton PA.

Contrast Media Mol Imaging. 2011 May-Jun;6(3):126-31. doi: 10.1002/cmmi.414. Epub 2011 Jan 19.

47.

Phospholipid-stabilized microbubble foam for injectable oxygen delivery.

Swanson EJ, Mohan V, Kheir J, Borden MA.

Langmuir. 2010 Oct 19;26(20):15726-9. doi: 10.1021/la1029432.

PMID:
20873807
48.

Ligand conjugation to bimodal poly(ethylene glycol) brush layers on microbubbles.

Chen CC, Borden MA.

Langmuir. 2010 Aug 17;26(16):13183-94. doi: 10.1021/la101796p.

49.

A microcomposite hydrogel for repeated on-demand ultrasound-triggered drug delivery.

Epstein-Barash H, Orbey G, Polat BE, Ewoldt RH, Feshitan J, Langer R, Borden MA, Kohane DS.

Biomaterials. 2010 Jul;31(19):5208-17. doi: 10.1016/j.biomaterials.2010.03.008. Epub 2010 Mar 29.

50.

Microbubble dissolution in a multigas environment.

Kwan JJ, Borden MA.

Langmuir. 2010 May 4;26(9):6542-8. doi: 10.1021/la904088p.

PMID:
20067292

Supplemental Content

Loading ...
Support Center