Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 18

1.

Phenazine-1-carboxylic acid and soil moisture influence biofilm development and turnover of rhizobacterial biomass on wheat root surfaces.

LeTourneau MK, Marshall MJ, Cliff JB, Bonsall RF, Dohnalkova AC, Mavrodi DV, Devi SI, Mavrodi OV, Harsh JB, Weller DM, Thomashow LS.

Environ Microbiol. 2018 Jun;20(6):2178-2194. doi: 10.1111/1462-2920.14244. Epub 2018 Jul 26.

PMID:
29687554
2.

Long-Term Irrigation Affects the Dynamics and Activity of the Wheat Rhizosphere Microbiome.

Mavrodi DV, Mavrodi OV, Elbourne LDH, Tetu S, Bonsall RF, Parejko J, Yang M, Paulsen IT, Weller DM, Thomashow LS.

Front Plant Sci. 2018 Mar 21;9:345. doi: 10.3389/fpls.2018.00345. eCollection 2018.

3.

Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals.

Mavrodi DV, Mavrodi OV, Parejko JA, Bonsall RF, Kwak YS, Paulitz TC, Thomashow LS, Weller DM.

Appl Environ Microbiol. 2012 Feb;78(3):804-12. doi: 10.1128/AEM.06784-11. Epub 2011 Dec 2.

4.

Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields.

Yang MM, Mavrodi DV, Mavrodi OV, Bonsall RF, Parejko JA, Paulitz TC, Thomashow LS, Yang HT, Weller DM, Guo JH.

Phytopathology. 2011 Dec;101(12):1481-91. doi: 10.1094/PHYTO-04-11-0096.

5.

Effect of Population Density of Pseudomonas fluorescens on Production of 2,4-Diacetylphloroglucinol in the Rhizosphere of Wheat.

Raaijmakers JM, Bonsall RF, Weller DM.

Phytopathology. 1999 Jun;89(6):470-5. doi: 10.1094/PHYTO.1999.89.6.470.

6.

Genetic Diversity of phlD from 2,4-Diacetylphloroglucinol-Producing Fluorescent Pseudomonas spp.

Mavrodi OV, McSpadden Gardener BB, Mavrodi DV, Bonsall RF, Weller DM, Thomashow LS.

Phytopathology. 2001 Jan;91(1):35-43. doi: 10.1094/PHYTO.2001.91.1.35.

7.

Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots.

Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Blouin Bankhead S, Allende Molar R, Bonsall RF, Mavrodi DV, Thomashow LS.

Plant Biol (Stuttg). 2007 Jan;9(1):4-20. Epub 2006 Oct 23. Review.

PMID:
17058178
8.

Transformation of Pseudomonas fluorescens with genes for biosynthesis of phenazine-1-carboxylic acid improves biocontrol of rhizoctonia root rot and in situ antibiotic production.

Huang Z, Bonsall RF, Mavrodi DV, Weller DM, Thomashow LS.

FEMS Microbiol Ecol. 2004 Aug 1;49(2):243-51. doi: 10.1016/j.femsec.2004.03.010.

9.

Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1.

Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS.

J Bacteriol. 2001 Nov;183(21):6454-65.

10.

phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84.

Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS.

J Bacteriol. 2001 Jan;183(1):318-27.

11.
12.

A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79.

Mavrodi DV, Ksenzenko VN, Bonsall RF, Cook RJ, Boronin AM, Thomashow LS.

J Bacteriol. 1998 May;180(9):2541-8.

13.
15.

Production of the antibiotic phenazine-1-carboxylic Acid by fluorescent pseudomonas species in the rhizosphere of wheat.

Thomashow LS, Weller DM, Bonsall RF, Pierson LS.

Appl Environ Microbiol. 1990 Apr;56(4):908-12.

17.
18.

Supplemental Content

Loading ...
Support Center