Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 59


Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci.

Briliūtė J, Urbanowicz PA, Luis AS, Baslé A, Paterson N, Rebello O, Hendel J, Ndeh DA, Lowe EC, Martens EC, Spencer DIR, Bolam DN, Crouch LI.

Nat Microbiol. 2019 Sep;4(9):1571-1581. doi: 10.1038/s41564-019-0466-x. Epub 2019 Jun 3.


Genetic Variation of the SusC/SusD Homologs from a Polysaccharide Utilization Locus Underlies Divergent Fructan Specificities and Functional Adaptation in Bacteroides thetaiotaomicron Strains.

Joglekar P, Sonnenburg ED, Higginbottom SK, Earle KA, Morland C, Shapiro-Ward S, Bolam DN, Sonnenburg JL.

mSphere. 2018 May 23;3(3). pii: e00185-18. doi: 10.1128/mSphereDirect.00185-18. eCollection 2018 May-Jun.


Cloning, purification and biochemical characterisation of a GH35 beta-1,3/beta-1,6-galactosidase from the mucin-degrading gut bacterium Akkermansia muciniphila.

Guo BS, Zheng F, Crouch L, Cai ZP, Wang M, Bolam DN, Liu L, Voglmeir J.

Glycoconj J. 2018 Jun;35(3):255-263. doi: 10.1007/s10719-018-9824-9. Epub 2018 May 12.


TonB-dependent transport by the gut microbiota: novel aspects of an old problem.

Bolam DN, van den Berg B.

Curr Opin Struct Biol. 2018 Aug;51:35-43. doi: 10.1016/ Epub 2018 Mar 15. Review.


How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans.

Cartmell A, Lowe EC, Baslé A, Firbank SJ, Ndeh DA, Murray H, Terrapon N, Lombard V, Henrissat B, Turnbull JE, Czjzek M, Gilbert HJ, Bolam DN.

Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):7037-7042. doi: 10.1073/pnas.1704367114. Epub 2017 Jun 19.


Structural basis for nutrient acquisition by dominant members of the human gut microbiota.

Glenwright AJ, Pothula KR, Bhamidimarri SP, Chorev DS, Baslé A, Firbank SJ, Zheng H, Robinson CV, Winterhalter M, Kleinekathöfer U, Bolam DN, van den Berg B.

Nature. 2017 Jan 19;541(7637):407-411. doi: 10.1038/nature20828. Epub 2017 Jan 11.


Corrigendum: Glycan complexity dictates microbial resource allocation in the large intestine.

Rogowski A, Briggs JA, Mortimer JC, Tryfona T, Terrapon N, Lowe EC, Baslé A, Morland C, Day AM, Zheng H, Rogers TE, Thompson P, Hawkins AR, Yadav MP, Henrissat B, Martens EC, Dupree P, Gilbert HJ, Bolam DN.

Nat Commun. 2016 Feb 5;7:10705. doi: 10.1038/ncomms10705. No abstract available.


Glycan complexity dictates microbial resource allocation in the large intestine.

Rogowski A, Briggs JA, Mortimer JC, Tryfona T, Terrapon N, Lowe EC, Baslé A, Morland C, Day AM, Zheng H, Rogers TE, Thompson P, Hawkins AR, Yadav MP, Henrissat B, Martens EC, Dupree P, Gilbert HJ, Bolam DN.

Nat Commun. 2015 Jun 26;6:7481. doi: 10.1038/ncomms8481. Erratum in: Nat Commun. 2016;7:10705.


Tuning transcription of nutrient utilization genes to catabolic rate promotes growth in a gut bacterium.

Raghavan V, Lowe EC, Townsend GE 2nd, Bolam DN, Groisman EA.

Mol Microbiol. 2014 Sep;93(5):1010-25. doi: 10.1111/mmi.12714. Epub 2014 Aug 12.


The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana.

Busse-Wicher M, Gomes TC, Tryfona T, Nikolovski N, Stott K, Grantham NJ, Bolam DN, Skaf MS, Dupree P.

Plant J. 2014 Aug;79(3):492-506. doi: 10.1111/tpj.12575. Epub 2014 Jul 15.


Evidence that GH115 α-glucuronidase activity, which is required to degrade plant biomass, is dependent on conformational flexibility.

Rogowski A, Baslé A, Farinas CS, Solovyova A, Mortimer JC, Dupree P, Gilbert HJ, Bolam DN.

J Biol Chem. 2014 Jan 3;289(1):53-64. doi: 10.1074/jbc.M113.525295. Epub 2013 Nov 8.


Secretion and assembly of functional mini-cellulosomes from synthetic chromosomal operons in Clostridium acetobutylicum ATCC 824.

Kovács K, Willson BJ, Schwarz K, Heap JT, Jackson A, Bolam DN, Winzer K, Minton NP.

Biotechnol Biofuels. 2013 Aug 20;6(1):117. doi: 10.1186/1754-6834-6-117.


Novel Clostridium thermocellum type I cohesin-dockerin complexes reveal a single binding mode.

Brás JL, Alves VD, Carvalho AL, Najmudin S, Prates JA, Ferreira LM, Bolam DN, Romão MJ, Gilbert HJ, Fontes CM.

J Biol Chem. 2012 Dec 28;287(53):44394-405. doi: 10.1074/jbc.M112.407700. Epub 2012 Nov 1.


Glycan recognition by the Bacteroidetes Sus-like systems.

Bolam DN, Koropatkin NM.

Curr Opin Struct Biol. 2012 Oct;22(5):563-9. doi: 10.1016/ Epub 2012 Jul 19. Review.


A scissor blade-like closing mechanism implicated in transmembrane signaling in a Bacteroides hybrid two-component system.

Lowe EC, Baslé A, Czjzek M, Firbank SJ, Bolam DN.

Proc Natl Acad Sci U S A. 2012 May 8;109(19):7298-303. doi: 10.1073/pnas.1200479109. Epub 2012 Apr 24.


A novel extracellular metallopeptidase domain shared by animal host-associated mutualistic and pathogenic microbes.

Nakjang S, Ndeh DA, Wipat A, Bolam DN, Hirt RP.

PLoS One. 2012;7(1):e30287. doi: 10.1371/journal.pone.0030287. Epub 2012 Jan 27.


Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.

Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, Abbott DW, Henrissat B, Gilbert HJ, Bolam DN, Gordon JI.

PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20.


Mechanistic insight into polysaccharide use within the intestinal microbiota.

Bolam DN, Sonnenburg JL.

Gut Microbes. 2011 Mar-Apr;2(2):86-90. Epub 2011 Mar 1. Review.


Circular permutation provides an evolutionary link between two families of calcium-dependent carbohydrate binding modules.

Montanier C, Flint JE, Bolam DN, Xie H, Liu Z, Rogowski A, Weiner DP, Ratnaparkhe S, Nurizzo D, Roberts SM, Turkenburg JP, Davies GJ, Gilbert HJ.

J Biol Chem. 2010 Oct 8;285(41):31742-54. doi: 10.1074/jbc.M110.142133. Epub 2010 Jul 21.


Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations.

Sonnenburg ED, Zheng H, Joglekar P, Higginbottom SK, Firbank SJ, Bolam DN, Sonnenburg JL.

Cell. 2010 Jun 25;141(7):1241-52. doi: 10.1016/j.cell.2010.05.005. Epub 2010 Jun 24.


Functional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum.

Pinheiro BA, Gilbert HJ, Sakka K, Sakka K, Fernandes VO, Prates JA, Alves VD, Bolam DN, Ferreira LM, Fontes CM.

Biochem J. 2009 Dec 10;424(3):375-84. doi: 10.1042/BJ20091152.


Family 6 carbohydrate-binding modules display multiple beta1,3-linked glucan-specific binding interfaces.

Correia MA, Pires VM, Gilbert HJ, Bolam DN, Fernandes VO, Alves VD, Prates JA, Ferreira LM, Fontes CM.

FEMS Microbiol Lett. 2009 Nov;300(1):48-57. doi: 10.1111/j.1574-6968.2009.01764.x. Epub 2009 Aug 19.


The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions.

Montanier C, Money VA, Pires VM, Flint JE, Pinheiro BA, Goyal A, Prates JA, Izumi A, Stålbrand H, Morland C, Cartmell A, Kolenova K, Topakas E, Dodson EJ, Bolam DN, Davies GJ, Fontes CM, Gilbert HJ.

PLoS Biol. 2009 Mar 31;7(3):e71. doi: 10.1371/journal.pbio.1000071.


The crystal structure of two macrolide glycosyltransferases provides a blueprint for host cell antibiotic immunity.

Bolam DN, Roberts S, Proctor MR, Turkenburg JP, Dodson EJ, Martinez-Fleites C, Yang M, Davis BG, Davies GJ, Gilbert HJ.

Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5336-41. Epub 2007 Mar 21. Erratum in: Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9911.


Reduction of starch granule size by expression of an engineered tandem starch-binding domain in potato plants.

Ji Q, Oomen RJ, Vincken JP, Bolam DN, Gilbert HJ, Suurs LC, Visser RG.

Plant Biotechnol J. 2004 May;2(3):251-60.


Insights into the synthesis of lipopolysaccharide and antibiotics through the structures of two retaining glycosyltransferases from family GT4.

Martinez-Fleites C, Proctor M, Roberts S, Bolam DN, Gilbert HJ, Davies GJ.

Chem Biol. 2006 Nov;13(11):1143-52.


Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes.

Blake AW, McCartney L, Flint JE, Bolam DN, Boraston AB, Gilbert HJ, Knox JP.

J Biol Chem. 2006 Sep 29;281(39):29321-9. Epub 2006 Jul 14.


Family 6 carbohydrate binding modules in beta-agarases display exquisite selectivity for the non-reducing termini of agarose chains.

Henshaw J, Horne-Bitschy A, van Bueren AL, Money VA, Bolam DN, Czjzek M, Ekborg NA, Weiner RM, Hutcheson SW, Davies GJ, Boraston AB, Gilbert HJ.

J Biol Chem. 2006 Jun 23;281(25):17099-107. Epub 2006 Apr 6.


Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules.

McCartney L, Blake AW, Flint J, Bolam DN, Boraston AB, Gilbert HJ, Knox JP.

Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4765-70. Epub 2006 Mar 14.


Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains.

Najmudin S, Guerreiro CI, Carvalho AL, Prates JA, Correia MA, Alves VD, Ferreira LM, Romão MJ, Gilbert HJ, Bolam DN, Fontes CM.

J Biol Chem. 2006 Mar 31;281(13):8815-28. Epub 2005 Nov 28.


Probing the breadth of macrolide glycosyltransferases: in vitro remodeling of a polyketide antibiotic creates active bacterial uptake and enhances potency.

Yang M, Proctor MR, Bolam DN, Errey JC, Field RA, Gilbert HJ, Davis BG.

J Am Chem Soc. 2005 Jul 6;127(26):9336-7.


Structural dissection and high-throughput screening of mannosylglycerate synthase.

Flint J, Taylor E, Yang M, Bolam DN, Tailford LE, Martinez-Fleites C, Dodson EJ, Davis BG, Gilbert HJ, Davies GJ.

Nat Struct Mol Biol. 2005 Jul;12(7):608-14. Epub 2005 Jun 12.


Probing the mechanism of ligand recognition in family 29 carbohydrate-binding modules.

Flint J, Bolam DN, Nurizzo D, Taylor EJ, Williamson MP, Walters C, Davies GJ, Gilbert HJ.

J Biol Chem. 2005 Jun 24;280(25):23718-26. Epub 2005 Mar 22.


Structure of a mannan-specific family 35 carbohydrate-binding module: evidence for significant conformational changes upon ligand binding.

Tunnicliffe RB, Bolam DN, Pell G, Gilbert HJ, Williamson MP.

J Mol Biol. 2005 Mar 25;347(2):287-96.


Carbohydrate-binding modules: fine-tuning polysaccharide recognition.

Boraston AB, Bolam DN, Gilbert HJ, Davies GJ.

Biochem J. 2004 Sep 15;382(Pt 3):769-81. Review.


The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-1,3-1,4-mixed linked glucans at a single binding site.

Carvalho AL, Goyal A, Prates JA, Bolam DN, Gilbert HJ, Pires VM, Ferreira LM, Planas A, Romão MJ, Fontes CM.

J Biol Chem. 2004 Aug 13;279(33):34785-93. Epub 2004 Jun 10.


The crystal structure of the family 6 carbohydrate binding module from Cellvibrio mixtus endoglucanase 5a in complex with oligosaccharides reveals two distinct binding sites with different ligand specificities.

Pires VM, Henshaw JL, Prates JA, Bolam DN, Ferreira LM, Fontes CM, Henrissat B, Planas A, Gilbert HJ, Czjzek M.

J Biol Chem. 2004 May 14;279(20):21560-8. Epub 2004 Mar 8.


X4 modules represent a new family of carbohydrate-binding modules that display novel properties.

Bolam DN, Xie H, Pell G, Hogg D, Galbraith G, Henrissat B, Gilbert HJ.

J Biol Chem. 2004 May 28;279(22):22953-63. Epub 2004 Mar 5.


The family 6 carbohydrate binding module CmCBM6-2 contains two ligand-binding sites with distinct specificities.

Henshaw JL, Bolam DN, Pires VM, Czjzek M, Henrissat B, Ferreira LM, Fontes CM, Gilbert HJ.

J Biol Chem. 2004 May 14;279(20):21552-9. Epub 2004 Mar 5.


Ligand-mediated dimerization of a carbohydrate-binding molecule reveals a novel mechanism for protein-carbohydrate recognition.

Flint J, Nurizzo D, Harding SE, Longman E, Davies GJ, Gilbert HJ, Bolam DN.

J Mol Biol. 2004 Mar 19;337(2):417-26.


Glycoside hydrolase carbohydrate-binding modules as molecular probes for the analysis of plant cell wall polymers.

McCartney L, Gilbert HJ, Bolam DN, Boraston AB, Knox JP.

Anal Biochem. 2004 Mar 1;326(1):49-54.


Importance of hydrophobic and polar residues in ligand binding in the family 15 carbohydrate-binding module from Cellvibrio japonicus Xyn10C.

Pell G, Williamson MP, Walters C, Du H, Gilbert HJ, Bolam DN.

Biochemistry. 2003 Aug 12;42(31):9316-23.


The alpha-glucuronidase, GlcA67A, of Cellvibrio japonicus utilizes the carboxylate and methyl groups of aldobiouronic acid as important substrate recognition determinants.

Nagy T, Nurizzo D, Davies GJ, Biely P, Lakey JH, Bolam DN, Gilbert HJ.

J Biol Chem. 2003 May 30;278(22):20286-92. Epub 2003 Mar 24.


Promiscuity in ligand-binding: The three-dimensional structure of a Piromyces carbohydrate-binding module, CBM29-2, in complex with cello- and mannohexaose.

Charnock SJ, Bolam DN, Nurizzo D, Szabó L, McKie VA, Gilbert HJ, Davies GJ.

Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14077-82. Epub 2002 Oct 21.


Calcium binding and thermostability of carbohydrate binding module CBM4-2 of Xyn10A from Rhodothermus marinus.

Abou-Hachem M, Karlsson EN, Simpson PJ, Linse S, Sellers P, Williamson MP, Jamieson SJ, Gilbert HJ, Bolam DN, Holst O.

Biochemistry. 2002 May 7;41(18):5720-9.


The location of the ligand-binding site of carbohydrate-binding modules that have evolved from a common sequence is not conserved.

Czjzek M, Bolam DN, Mosbah A, Allouch J, Fontes CM, Ferreira LM, Bornet O, Zamboni V, Darbon H, Smith NL, Black GW, Henrissat B, Gilbert HJ.

J Biol Chem. 2001 Dec 21;276(51):48580-7. Epub 2001 Oct 22.


Structure of a family 15 carbohydrate-binding module in complex with xylopentaose. Evidence that xylan binds in an approximate 3-fold helical conformation.

Szabo L, Jamal S, Xie H, Charnock SJ, Bolam DN, Gilbert HJ, Davies GJ.

J Biol Chem. 2001 Dec 28;276(52):49061-5. Epub 2001 Oct 11.


A novel carbohydrate-binding protein is a component of the plant cell wall-degrading complex of Piromyces equi.

Freelove AC, Bolam DN, White P, Hazlewood GP, Gilbert HJ.

J Biol Chem. 2001 Nov 16;276(46):43010-7. Epub 2001 Sep 17.


Clostridium thermocellum Xyn10B carbohydrate-binding module 22-2: the role of conserved amino acids in ligand binding.

Xie H, Gilbert HJ, Charnock SJ, Davies GJ, Williamson MP, Simpson PJ, Raghothama S, Fontes CM, Dias FM, Ferreira LM, Bolam DN.

Biochemistry. 2001 Aug 7;40(31):9167-76.


Crystal structure of mannanase 26A from Pseudomonas cellulosa and analysis of residues involved in substrate binding.

Hogg D, Woo EJ, Bolam DN, McKie VA, Gilbert HJ, Pickersgill RW.

J Biol Chem. 2001 Aug 17;276(33):31186-92. Epub 2001 May 29.

Supplemental Content

Loading ...
Support Center