Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 52

1.

A simple strategy to differentiate between H+- and Na+-transporting NADH:quinone oxidoreductases.

Bertsova YV, Baykov AA, Bogachev AV.

Arch Biochem Biophys. 2020 Jan 15;681:108266. doi: 10.1016/j.abb.2020.108266. [Epub ahead of print]

PMID:
31953132
2.

Mutational analysis of the flavinylation and binding motifs in two protein targets of the flavin transferase ApbE.

Bertsova YV, Serebryakova MV, Anashkin VA, Baykov AA, Bogachev AV.

FEMS Microbiol Lett. 2019 Nov 1;366(22). pii: fnz252. doi: 10.1093/femsle/fnz252.

PMID:
31834358
3.

Na+-Translocating Ferredoxin:NAD+ Oxidoreductase Is a Component of Photosynthetic Electron Transport Chain in Green Sulfur Bacteria.

Bertsova YV, Mamedov MD, Bogachev AV.

Biochemistry (Mosc). 2019 Nov;84(11):1403-1410. doi: 10.1134/S0006297919110142.

PMID:
31760926
4.

Flavodoxin with an air-stable flavin semiquinone in a green sulfur bacterium.

Bertsova YV, Kulik LV, Mamedov MD, Baykov AA, Bogachev AV.

Photosynth Res. 2019 Nov;142(2):127-136. doi: 10.1007/s11120-019-00658-1. Epub 2019 Jul 13.

PMID:
31302833
5.

Flavin transferase: the maturation factor of flavin-containing oxidoreductases.

Bogachev AV, Baykov AA, Bertsova YV.

Biochem Soc Trans. 2018 Oct 19;46(5):1161-1169. doi: 10.1042/BST20180524. Epub 2018 Aug 28. Review.

PMID:
30154099
6.

EPR evidence for a fast-relaxing iron center in Na+-translocating NADH:quinone-oxidoreductase.

Kulik LV, Bertsova YV, Bogachev AV.

J Inorg Biochem. 2018 Jul;184:15-18. doi: 10.1016/j.jinorgbio.2018.04.004. Epub 2018 Apr 6.

PMID:
29635097
7.

Catalytically important flavin linked through a phosphoester bond in a eukaryotic fumarate reductase.

Serebryakova MV, Bertsova YV, Sokolov SS, Kolesnikov AA, Baykov AA, Bogachev AV.

Biochimie. 2018 Jun;149:34-40. doi: 10.1016/j.biochi.2018.03.013. Epub 2018 Apr 3.

PMID:
29621574
8.

Identification of the key determinant of the transport promiscuity in Na+-translocating rhodopsins.

Mamedov AM, Bertsova YV, Anashkin VA, Mamedov MD, Baykov AA, Bogachev AV.

Biochem Biophys Res Commun. 2018 May 15;499(3):600-604. doi: 10.1016/j.bbrc.2018.03.196. Epub 2018 Mar 30.

PMID:
29601812
9.

Engineering a carotenoid-binding site in Dokdonia sp. PRO95 Na+-translocating rhodopsin by a single amino acid substitution.

Anashkin VA, Bertsova YV, Mamedov AM, Mamedov MD, Arutyunyan AM, Baykov AA, Bogachev AV.

Photosynth Res. 2018 May;136(2):161-169. doi: 10.1007/s11120-017-0453-0. Epub 2017 Oct 5.

PMID:
28983723
10.

A single mutation converts bacterial Na(+) -transporting rhodopsin into an H(+) transporter.

Mamedov MD, Mamedov AM, Bertsova YV, Bogachev AV.

FEBS Lett. 2016 Sep;590(17):2827-35. doi: 10.1002/1873-3468.12324. Epub 2016 Aug 5.

11.

Na+-Translocating Rhodopsin from Dokdonia sp. PRO95 Does Not Contain Carotenoid Antenna.

Bertsova YV, Arutyunyan AM, Bogachev AV.

Biochemistry (Mosc). 2016 Apr;81(4):414-9. doi: 10.1134/S000629791604012X.

12.

Real-time kinetics of electrogenic Na(+) transport by rhodopsin from the marine flavobacterium Dokdonia sp. PRO95.

Bogachev AV, Bertsova YV, Verkhovskaya ML, Mamedov MD, Skulachev VP.

Sci Rep. 2016 Feb 11;6:21397. doi: 10.1038/srep21397.

13.

Identification of the coupling step in Na(+)-translocating NADH:quinone oxidoreductase from real-time kinetics of electron transfer.

Belevich NP, Bertsova YV, Verkhovskaya ML, Baykov AA, Bogachev AV.

Biochim Biophys Acta. 2016 Feb;1857(2):141-149. doi: 10.1016/j.bbabio.2015.12.001. Epub 2015 Dec 4.

14.

NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase.

Kostyrko VA, Bertsova YV, Serebryakova MV, Baykov AA, Bogachev AV.

J Bacteriol. 2015 Dec 7;198(4):655-63. doi: 10.1128/JB.00757-15.

15.

Proteorhodopsin from Dokdonia sp. PRO95 is a light-driven Na+-pump.

Bertsova YV, Bogachev AV, Skulachev VP.

Biochemistry (Mosc). 2015 Apr;80(4):449-54. doi: 10.1134/S0006297915040082.

16.

Localization-controlled specificity of FAD:threonine flavin transferases in Klebsiella pneumoniae and its implications for the mechanism of Na(+)-translocating NADH:quinone oxidoreductase.

Bertsova YV, Kostyrko VA, Baykov AA, Bogachev AV.

Biochim Biophys Acta. 2014 Jul;1837(7):1122-9. doi: 10.1016/j.bbabio.2013.12.006. Epub 2013 Dec 20.

17.

Alternative pyrimidine biosynthesis protein ApbE is a flavin transferase catalyzing covalent attachment of FMN to a threonine residue in bacterial flavoproteins.

Bertsova YV, Fadeeva MS, Kostyrko VA, Serebryakova MV, Baykov AA, Bogachev AV.

J Biol Chem. 2013 May 17;288(20):14276-86. doi: 10.1074/jbc.M113.455402. Epub 2013 Apr 4.

18.

Urocanate reductase: identification of a novel anaerobic respiratory pathway in Shewanella oneidensis MR-1.

Bogachev AV, Bertsova YV, Bloch DA, Verkhovsky MI.

Mol Microbiol. 2012 Dec;86(6):1452-63. doi: 10.1111/mmi.12067. Epub 2012 Nov 1.

19.

Alginate synthesis in Azotobacter vinelandii is increased by reducing the intracellular production of ubiquinone.

Núñez C, Peña C, Kloeckner W, Hernández-Eligio A, Bogachev AV, Moreno S, Guzmán J, Büchs J, Espín G.

Appl Microbiol Biotechnol. 2013 Mar;97(6):2503-12. doi: 10.1007/s00253-012-4329-0. Epub 2012 Aug 10.

PMID:
22878844
20.

Sodium-dependent movement of covalently bound FMN residue(s) in Na(+)-translocating NADH:quinone oxidoreductase.

Verkhovsky MI, Bogachev AV, Pivtsov AV, Bertsova YV, Fedin MV, Bloch DA, Kulik LV.

Biochemistry. 2012 Jul 10;51(27):5414-21. Epub 2012 Jun 25.

PMID:
22697411
21.

Cys377 residue in NqrF subunit confers Ag(+) sensitivity of Na+-translocating NADH:quinone oxidoreductase from Vibrio harveyi.

Fadeeva MS, Bertsova YV, Euro L, Bogachev AV.

Biochemistry (Mosc). 2011 Feb;76(2):186-95.

PMID:
21568851
22.

Sodium-translocating NADH:quinone oxidoreductase as a redox-driven ion pump.

Verkhovsky MI, Bogachev AV.

Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):738-46. doi: 10.1016/j.bbabio.2009.12.020. Epub 2010 Jan 4. Review.

23.

Redox properties of the prosthetic groups of Na(+)-translocating NADH:quinone oxidoreductase. 2. Study of the enzyme by optical spectroscopy.

Bogachev AV, Bloch DA, Bertsova YV, Verkhovsky MI.

Biochemistry. 2009 Jul 14;48(27):6299-304. doi: 10.1021/bi900525v.

PMID:
19496622
24.

Redox properties of the prosthetic groups of Na(+)-translocating nadh:quinone oxidoreductase. 1. Electron paramagnetic resonance study of the enzyme.

Bogachev AV, Kulik LV, Bloch DA, Bertsova YV, Fadeeva MS, Verkhovsky MI.

Biochemistry. 2009 Jul 14;48(27):6291-8. doi: 10.1021/bi900524m.

PMID:
19496621
25.

The Na+-translocating NADH : ubiquinone oxidoreductase of Azotobacter vinelandii negatively regulates alginate synthesis.

Núñez C, Bogachev AV, Guzmán G, Tello I, Guzmán J, Espín G.

Microbiology. 2009 Jan;155(Pt 1):249-56. doi: 10.1099/mic.0.022533-0.

PMID:
19118365
26.

Primary steps of the Na+-translocating NADH:ubiquinone oxidoreductase catalytic cycle resolved by the ultrafast freeze-quench approach.

Bogachev AV, Belevich NP, Bertsova YV, Verkhovsky MI.

J Biol Chem. 2009 Feb 27;284(9):5533-8. doi: 10.1074/jbc.M808984200. Epub 2008 Dec 30.

27.

Catalytic properties of Na+-translocating NADH:quinone oxidoreductases from Vibrio harveyi, Klebsiella pneumoniae, and Azotobacter vinelandii.

Fadeeva MS, Núñez C, Bertsova YV, Espín G, Bogachev AV.

FEMS Microbiol Lett. 2008 Feb;279(1):116-23.

28.

Site-directed mutagenesis of conserved cysteine residues in NqrD and NqrE subunits of Na+-translocating NADH:quinone oxidoreductase.

Fadeeva MS, Bertsova YV, Verkhovsky MI, Bogachev AV.

Biochemistry (Mosc). 2008 Feb;73(2):123-9.

29.

Redox-dependent sodium binding by the Na(+)-translocating NADH:quinone oxidoreductase from Vibrio harveyi.

Bogachev AV, Bertsova YV, Aitio O, Permi P, Verkhovsky MI.

Biochemistry. 2007 Sep 4;46(35):10186-91. Epub 2007 Aug 15.

PMID:
17696408
30.

Regulation of expression of Na+ -translocating NADH:quinone oxidoreductase genes in Vibrio harveyi and Klebsiella pneumoniae.

Fadeeva MS, Yakovtseva EA, Belevich GA, Bertsova YV, Bogachev AV.

Arch Microbiol. 2007 Oct;188(4):341-8. Epub 2007 Jun 6.

PMID:
17551713
31.

Thermodynamic properties of the redox centers of Na(+)-translocating NADH:quinone oxidoreductase.

Bogachev AV, Bertsova YV, Bloch DA, Verkhovsky MI.

Biochemistry. 2006 Mar 14;45(10):3421-8.

PMID:
16519537
32.

Na(+)-Translocating NADH:quinone oxidoreductase: progress achieved and prospects of investigations.

Bogachev AV, Verkhovsky MI.

Biochemistry (Mosc). 2005 Feb;70(2):143-9. Review.

33.

NADH oxidation by mitochondria from the thermogenic plant Arum orientale.

Bertsova YV, Popov VN, Bogachev AV.

Biochemistry (Mosc). 2004 May;69(5):580-4.

PMID:
15193134
34.
35.

Kinetics of the spectral changes during reduction of the Na+-motive NADH:quinone oxidoreductase from Vibrio harveyi.

Bogachev AV, Bertsova YV, Ruuge EK, Wikström M, Verkhovsky MI.

Biochim Biophys Acta. 2002 Dec 2;1556(2-3):113-20.

36.

Operation of the cbb3-type terminal oxidase in Azotobacter vinelandii.

Bertsova YV, Bogachev AV.

Biochemistry (Mosc). 2002 Jun;67(6):622-6.

37.

Functional analysis of the Na+/H+ antiporter encoding genes of the cyanobacterium Synechocystis PCC 6803.

Elanskaya IV, Karandashova IV, Bogachev AV, Hagemann M.

Biochemistry (Mosc). 2002 Apr;67(4):432-40.

38.
39.

Sodium-dependent steps in the redox reactions of the Na+-motive NADH:quinone oxidoreductase from Vibrio harveyi.

Bogachev AV, Bertsova YV, Barquera B, Verkhovsky MI.

Biochemistry. 2001 Jun 19;40(24):7318-23.

PMID:
11401580
40.

Analysis of HI0220 protein from Haemophilus influenzae, a novel structural and functional analog of ArcB protein from Escherichia coli.

Manukhov IV, Bertsova YV, Trofimov DY, Bogachev AV, Skulachev VP.

Biochemistry (Mosc). 2000 Nov;65(11):1321-6.

PMID:
11112851
41.

[Distribution and dynamic of 137Cs in arboreal plants].

Chilimov AI, Bogachev AV.

Radiats Biol Radioecol. 2000 Mar-Apr;40(2):231-7. Russian.

PMID:
10819051
42.

Sequencing and preliminary characterization of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio harveyi.

Zhou W, Bertsova YV, Feng B, Tsatsos P, Verkhovskaya ML, Gennis RB, Bogachev AV, Barquera B.

Biochemistry. 1999 Dec 7;38(49):16246-52.

PMID:
10587447
43.

Two NADH:ubiquinone oxidoreductases of Azotobacter vinelandii and their role in the respiratory protection.

Bertsova YV, Bogachev AV, Skulachev VP.

Biochim Biophys Acta. 1998 Feb 25;1363(2):125-33.

44.

Generation of protonic potential by the bd-type quinol oxidase of Azotobacter vinelandii.

Bertsova YV, Bogachev AV, Skulachev VP.

FEBS Lett. 1997 Sep 8;414(2):369-72.

45.

The Na+/e- stoichiometry of the Na+-motive NADH:quinone oxidoreductase in Vibrio alginolyticus.

Bogachev AV, Murtazina RA, Skulachev VP.

FEBS Lett. 1997 Jun 16;409(3):475-7.

46.

Aeration-dependent changes in composition of the quinone pool in Escherichia coli. Evidence of post-transcriptional regulation of the quinone biosynthesis.

Shestopalov AI, Bogachev AV, Murtazina RA, Viryasov MB, Skulachev VP.

FEBS Lett. 1997 Mar 10;404(2-3):272-4.

47.
48.

Induction of the Escherichia coli cytochrome d by low delta mu H+ and by sodium ions.

Bogachev AV, Murtazine RA, Shestopalov AI, Skulachev VP.

Eur J Biochem. 1995 Aug 15;232(1):304-8.

49.

Cytochrome d induction in Escherichia coli growing under unfavorable conditions.

Bogachev AV, Murtazina RA, Skulachev VP.

FEBS Lett. 1993 Dec 20;336(1):75-8.

50.

The role of protonic and sodium potentials in the motility of E. coli and Bacillus FTU.

Bogachev AV, Murtasina RA, Shestopalov AI, Skulachev VP.

Biochim Biophys Acta. 1993 May 6;1142(3):321-6.

PMID:
8386939

Supplemental Content

Loading ...
Support Center