Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 32

1.

DNA Nanotechnology Enters Cell Membranes.

Huo S, Li H, Boersma AJ, Herrmann A.

Adv Sci (Weinh). 2019 Mar 20;6(10):1900043. doi: 10.1002/advs.201900043. eCollection 2019 May 17. Review.

2.

Decreased Effective Macromolecular Crowding in Escherichia coli Adapted to Hyperosmotic Stress.

Liu B, Hasrat Z, Poolman B, Boersma AJ.

J Bacteriol. 2019 Apr 24;201(10). pii: e00708-18. doi: 10.1128/JB.00708-18. Print 2019 May 15.

3.

Macromolecular crowding effects on energy transfer efficiency and donor-acceptor distance of hetero-FRET sensors using time-resolved fluorescence.

Schwarz J, J Leopold H, Leighton R, Miller RC, Aplin CP, Boersma AJ, Heikal AA, Sheets ED.

Methods Appl Fluoresc. 2019 Feb 19;7(2):025002. doi: 10.1088/2050-6120/ab0242.

PMID:
30690439
4.

Crowding Effects on Energy-Transfer Efficiencies of Hetero-FRET Probes As Measured Using Time-Resolved Fluorescence Anisotropy.

Leopold HJ, Leighton R, Schwarz J, Boersma AJ, Sheets ED, Heikal AA.

J Phys Chem B. 2019 Jan 17;123(2):379-393. doi: 10.1021/acs.jpcb.8b09829. Epub 2019 Jan 3.

PMID:
30571116
5.

How Important Is Protein Diffusion in Prokaryotes?

Schavemaker PE, Boersma AJ, Poolman B.

Front Mol Biosci. 2018 Nov 13;5:93. doi: 10.3389/fmolb.2018.00093. eCollection 2018. Review.

6.

Rotational and translational diffusion of size-dependent fluorescent probes in homogeneous and heterogeneous environments.

Lee HB, Cong A, Leopold H, Currie M, Boersma AJ, Sheets ED, Heikal AA.

Phys Chem Chem Phys. 2018 Oct 7;20(37):24045-24057. doi: 10.1039/c8cp03873b. Epub 2018 Sep 11.

PMID:
30204161
7.

Influence of Fluorescent Protein Maturation on FRET Measurements in Living Cells.

Liu B, Mavrova SN, van den Berg J, Kristensen SK, Mantovanelli L, Veenhoff LM, Poolman B, Boersma AJ.

ACS Sens. 2018 Sep 28;3(9):1735-1742. doi: 10.1021/acssensors.8b00473. Epub 2018 Sep 12.

8.

Genetically Encoded Förster Resonance Energy Transfer-Based Biosensors Studied on the Single-Molecule Level.

Höfig H, Otten J, Steffen V, Pohl M, Boersma AJ, Fitter J.

ACS Sens. 2018 Aug 24;3(8):1462-1470. doi: 10.1021/acssensors.8b00143. Epub 2018 Jul 18.

PMID:
29979038
9.

Ionic Strength Sensing in Living Cells.

Liu B, Poolman B, Boersma AJ.

ACS Chem Biol. 2017 Oct 20;12(10):2510-2514. doi: 10.1021/acschembio.7b00348. Epub 2017 Sep 6.

10.

Fluorescence Dynamics of a FRET Probe Designed for Crowding Studies.

Currie M, Leopold H, Schwarz J, Boersma AJ, Sheets ED, Heikal AA.

J Phys Chem B. 2017 Jun 15;121(23):5688-5698. doi: 10.1021/acs.jpcb.7b01306. Epub 2017 May 31.

PMID:
28520430
11.

Design and Properties of Genetically Encoded Probes for Sensing Macromolecular Crowding.

Liu B, Åberg C, van Eerden FJ, Marrink SJ, Poolman B, Boersma AJ.

Biophys J. 2017 May 9;112(9):1929-1939. doi: 10.1016/j.bpj.2017.04.004.

12.

Microorganisms maintain crowding homeostasis.

van den Berg J, Boersma AJ, Poolman B.

Nat Rev Microbiol. 2017 May;15(5):309-318. doi: 10.1038/nrmicro.2017.17. Epub 2017 Mar 27. Review.

PMID:
28344349
13.

Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry.

Lee J, Boersma AJ, Boudreau MA, Cheley S, Daltrop O, Li J, Tamagaki H, Bayley H.

ACS Nano. 2016 Sep 27;10(9):8843-50. doi: 10.1021/acsnano.6b04663. Epub 2016 Aug 30.

14.

Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects.

Groen J, Foschepoth D, te Brinke E, Boersma AJ, Imamura H, Rivas G, Heus HA, Huck WT.

J Am Chem Soc. 2015 Oct 14;137(40):13041-8. doi: 10.1021/jacs.5b07898. Epub 2015 Sep 29.

PMID:
26383885
15.

Protein engineering: The power of four.

Boersma AJ, Roelfes G.

Nat Chem. 2015 Apr;7(4):277-9. doi: 10.1038/nchem.2220. No abstract available.

PMID:
25803464
16.

A sensor for quantification of macromolecular crowding in living cells.

Boersma AJ, Zuhorn IS, Poolman B.

Nat Methods. 2015 Mar;12(3):227-9, 1 p following 229. doi: 10.1038/nmeth.3257. Epub 2015 Feb 2.

PMID:
25643150
17.

Characterisation of the interactions between substrate, copper(II) complex and DNA and their role in rate acceleration in DNA-based asymmetric catalysis.

Draksharapu A, Boersma AJ, Browne WR, Roelfes G.

Dalton Trans. 2015 Feb 28;44(8):3656-63. doi: 10.1039/c4dt02734e.

PMID:
25491950
18.

Binding of copper(II) polypyridyl complexes to DNA and consequences for DNA-based asymmetric catalysis.

Draksharapu A, Boersma AJ, Leising M, Meetsma A, Browne WR, Roelfes G.

Dalton Trans. 2015 Feb 28;44(8):3647-55. doi: 10.1039/c4dt02733g.

PMID:
25476597
19.

Continuous stochastic detection of amino acid enantiomers with a protein nanopore.

Boersma AJ, Bayley H.

Angew Chem Int Ed Engl. 2012 Sep 17;51(38):9606-9. doi: 10.1002/anie.201205687. Epub 2012 Aug 29. No abstract available.

PMID:
22930401
20.

Real-time stochastic detection of multiple neurotransmitters with a protein nanopore.

Boersma AJ, Brain KL, Bayley H.

ACS Nano. 2012 Jun 26;6(6):5304-8. doi: 10.1021/nn301125y. Epub 2012 May 24.

PMID:
22616662
21.

Ligand denticity controls enantiomeric preference in DNA-based asymmetric catalysis.

Boersma AJ, de Bruin B, Feringa BL, Roelfes G.

Chem Commun (Camb). 2012 Feb 28;48(18):2394-6. doi: 10.1039/c2cc17350f. Epub 2012 Jan 23.

PMID:
22266945
22.

Catalytic enantioselective syn hydration of enones in water using a DNA-based catalyst.

Boersma AJ, Coquière D, Geerdink D, Rosati F, Feringa BL, Roelfes G.

Nat Chem. 2010 Nov;2(11):991-5. doi: 10.1038/nchem.819. Epub 2010 Sep 19.

PMID:
20966958
23.

On the role of DNA in DNA-based catalytic enantioselective conjugate addition reactions.

Dijk EW, Boersma AJ, Feringa BL, Roelfes G.

Org Biomol Chem. 2010 Sep 7;8(17):3868-73. doi: 10.1039/c005048b. Epub 2010 Jun 25.

PMID:
20577702
24.

DNA-based asymmetric catalysis.

Boersma AJ, Megens RP, Feringa BL, Roelfes G.

Chem Soc Rev. 2010 Jun;39(6):2083-92. doi: 10.1039/b811349c. Epub 2010 Apr 21. Review.

PMID:
20411188
25.

A kinetic and structural investigation of DNA-based asymmetric catalysis using first-generation ligands.

Rosati F, Boersma AJ, Klijn JE, Meetsma A, Feringa BL, Roelfes G.

Chemistry. 2009 Sep 21;15(37):9596-605. doi: 10.1002/chem.200900456.

PMID:
19579236
26.

Enantioselective Friedel-Crafts reactions in water using a DNA-based catalyst.

Boersma AJ, Feringa BL, Roelfes G.

Angew Chem Int Ed Engl. 2009;48(18):3346-8. doi: 10.1002/anie.200900371.

PMID:
19334029
27.

DNA-based asymmetric catalysis: sequence-dependent rate acceleration and enantioselectivity.

Boersma AJ, Klijn JE, Feringa BL, Roelfes G.

J Am Chem Soc. 2008 Sep 3;130(35):11783-90. doi: 10.1021/ja803170m. Epub 2008 Aug 6.

PMID:
18681429
28.
29.

Metal-catalyzed cotrimerization of arynes and alkenes.

Quintana I, Boersma AJ, Peña D, Pérez D, Guitian E.

Org Lett. 2006 Jul 20;8(15):3347-9.

PMID:
16836402
30.

Highly enantioselective DNA-based catalysis.

Roelfes G, Boersma AJ, Feringa BL.

Chem Commun (Camb). 2006 Feb 14;(6):635-7. Epub 2006 Jan 6.

PMID:
16446834
31.

The impact of reacher length on electromyography activity and task.

Pinkston NE, Boersma AJ, Spaulding SJ.

Can J Occup Ther. 2005 Apr;72(2):89-95.

PMID:
15881048
32.

Catalytic enantioselective conjugate addition of dialkylzinc reagents to N-substituted-2,3-dehydro-4-piperidones.

Sebesta R, Pizzuti MG, Boersma AJ, Minnaard AJ, Feringa BL.

Chem Commun (Camb). 2005 Apr 7;(13):1711-3. Epub 2005 Feb 2.

PMID:
15791307

Supplemental Content

Loading ...
Support Center