Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 17

1.

Genomic and physiological analyses reveal that extremely thermophilic Caldicellulosiruptor changbaiensis deploys uncommon cellulose attachment mechanisms.

Khan AMAM, Mendoza C, Hauk VJ, Blumer-Schuette SE.

J Ind Microbiol Biotechnol. 2019 Aug 7. doi: 10.1007/s10295-019-02222-1. [Epub ahead of print]

PMID:
31392469
2.

Complete Genome Sequence of Caldicellulosiruptor changbaiensis CBS-Z, an Extremely Thermophilic, Cellulolytic Bacterium Isolated from a Hot Spring in China.

Mendoza C, Blumer-Schuette SE.

Microbiol Resour Announc. 2019 Feb 28;8(9). pii: e00021-19. doi: 10.1128/MRA.00021-19. eCollection 2019 Feb.

3.

Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic Caldicellulosiruptor Species.

Lee LL, Hart WS, Lunin VV, Alahuhta M, Bomble YJ, Himmel ME, Blumer-Schuette SE, Adams MWW, Kelly RM.

Appl Environ Microbiol. 2019 Jan 23;85(3). pii: e01983-18. doi: 10.1128/AEM.01983-18. Print 2019 Feb 1.

4.

Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses.

Lee LL, Blumer-Schuette SE, Izquierdo JA, Zurawski JV, Loder AJ, Conway JM, Elkins JG, Podar M, Clum A, Jones PC, Piatek MJ, Weighill DA, Jacobson DA, Adams MWW, Kelly RM.

Appl Environ Microbiol. 2018 Apr 16;84(9). pii: e02694-17. doi: 10.1128/AEM.02694-17. Print 2018 May 1.

5.

Caldicellulosiruptor saccharolyticus transcriptomes reveal consequences of chemical pretreatment and genetic modification of lignocellulose.

Blumer-Schuette SE, Zurawski JV, Conway JM, Khatibi P, Lewis DL, Li Q, Chiang VL, Kelly RM.

Microb Biotechnol. 2017 Nov;10(6):1546-1557. doi: 10.1111/1751-7915.12494. Epub 2017 Mar 20.

6.

A Highly Thermostable Kanamycin Resistance Marker Expands the Tool Kit for Genetic Manipulation of Caldicellulosiruptor bescii.

Lipscomb GL, Conway JM, Blumer-Schuette SE, Kelly RM, Adams MWW.

Appl Environ Microbiol. 2016 Jun 30;82(14):4421-4428. doi: 10.1128/AEM.00570-16. Print 2016 Jul 15.

7.

Multidomain, Surface Layer-associated Glycoside Hydrolases Contribute to Plant Polysaccharide Degradation by Caldicellulosiruptor Species.

Conway JM, Pierce WS, Le JH, Harper GW, Wright JH, Tucker AL, Zurawski JV, Lee LL, Blumer-Schuette SE, Kelly RM.

J Biol Chem. 2016 Mar 25;291(13):6732-47. doi: 10.1074/jbc.M115.707810. Epub 2016 Jan 26.

8.

Complete Genome Sequences of Caldicellulosiruptor sp. Strain Rt8.B8, Caldicellulosiruptor sp. Strain Wai35.B1, and "Thermoanaerobacter cellulolyticus".

Lee LL, Izquierdo JA, Blumer-Schuette SE, Zurawski JV, Conway JM, Cottingham RW, Huntemann M, Copeland A, Chen IM, Kyrpides N, Markowitz V, Palaniappan K, Ivanova N, Mikhailova N, Ovchinnikova G, Andersen E, Pati A, Stamatis D, Reddy TB, Shapiro N, Nordberg HP, Cantor MN, Hua SX, Woyke T, Kelly RM.

Genome Announc. 2015 May 14;3(3). pii: e00440-15. doi: 10.1128/genomeA.00440-15.

9.

Discrete and structurally unique proteins (tāpirins) mediate attachment of extremely thermophilic Caldicellulosiruptor species to cellulose.

Blumer-Schuette SE, Alahuhta M, Conway JM, Lee LL, Zurawski JV, Giannone RJ, Hettich RL, Lunin VV, Himmel ME, Kelly RM.

J Biol Chem. 2015 Apr 24;290(17):10645-56. doi: 10.1074/jbc.M115.641480. Epub 2015 Feb 26.

10.

Thermophilic lignocellulose deconstruction.

Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MW, Kelly RM.

FEMS Microbiol Rev. 2014 May;38(3):393-448. doi: 10.1111/1574-6976.12044. Epub 2013 Nov 13. Review.

11.

Stationary phase and nutrient levels trigger transcription of a genomic locus containing a novel peptide (TM1316) in the hyperthermophilic bacterium Thermotoga maritima.

Frock AD, Montero CI, Blumer-Schuette SE, Kelly RM.

Appl Environ Microbiol. 2013 Nov;79(21):6637-46. doi: 10.1128/AEM.01627-13. Epub 2013 Aug 23.

12.

Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass.

Blumer-Schuette SE, Giannone RJ, Zurawski JV, Ozdemir I, Ma Q, Yin Y, Xu Y, Kataeva I, Poole FL 2nd, Adams MW, Hamilton-Brehm SD, Elkins JG, Larimer FW, Land ML, Hauser LJ, Cottingham RW, Hettich RL, Kelly RM.

J Bacteriol. 2012 Aug;194(15):4015-28. doi: 10.1128/JB.00266-12. Epub 2012 May 25.

13.
14.

Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus.

Blumer-Schuette SE, Ozdemir I, Mistry D, Lucas S, Lapidus A, Cheng JF, Goodwin LA, Pitluck S, Land ML, Hauser LJ, Woyke T, Mikhailova N, Pati A, Kyrpides NC, Ivanova N, Detter JC, Walston-Davenport K, Han S, Adams MW, Kelly RM.

J Bacteriol. 2011 Mar;193(6):1483-4. doi: 10.1128/JB.01515-10. Epub 2011 Jan 7.

15.

Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor.

Blumer-Schuette SE, Lewis DL, Kelly RM.

Appl Environ Microbiol. 2010 Dec;76(24):8084-92. doi: 10.1128/AEM.01400-10. Epub 2010 Oct 22.

16.

Genetic analysis of streptomycin-resistant (Sm(R)) strains of Erwinia amylovora suggests that dissemination of two genotypes is responsible for the current distribution of Sm(R) E. amylovora in Michigan.

McGhee GC, Guasco J, Bellomo LM, Blumer-Schuette SE, Shane WW, Irish-Brown A, Sundin GW.

Phytopathology. 2011 Feb;101(2):182-91. doi: 10.1094/PHYTO-04-10-0127.

17.

Extremely thermophilic microorganisms for biomass conversion: status and prospects.

Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM.

Curr Opin Biotechnol. 2008 Jun;19(3):210-7. doi: 10.1016/j.copbio.2008.04.007. Epub 2008 Jun 2. Review.

PMID:
18524567

Supplemental Content

Loading ...
Support Center