Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 20

1.

Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization.

Warr AR, Hubbard TP, Munera D, Blondel CJ, Abel Zur Wiesch P, Abel S, Wang X, Davis BM, Waldor MK.

PLoS Pathog. 2019 Aug 12;15(8):e1007652. doi: 10.1371/journal.ppat.1007652. eCollection 2019 Aug.

2.

A FACS-Based Genome-wide CRISPR Screen Reveals a Requirement for COPI in Chlamydia trachomatis Invasion.

Park JS, Helble JD, Lazarus JE, Yang G, Blondel CJ, Doench JG, Starnbach MN, Waldor MK.

iScience. 2019 Jan 25;11:71-84. doi: 10.1016/j.isci.2018.12.011. Epub 2018 Dec 14.

3.

CRISPR Screen Reveals that EHEC's T3SS and Shiga Toxin Rely on Shared Host Factors for Infection.

Pacheco AR, Lazarus JE, Sit B, Schmieder S, Lencer WI, Blondel CJ, Doench JG, Davis BM, Waldor MK.

MBio. 2018 Jun 19;9(3). pii: e01003-18. doi: 10.1128/mBio.01003-18.

4.

Exploring the Genomic Traits of Non-toxigenic Vibrio parahaemolyticus Strains Isolated in Southern Chile.

Castillo D, Pérez-Reytor D, Plaza N, Ramírez-Araya S, Blondel CJ, Corsini G, Bastías R, Loyola DE, Jaña V, Pavez L, García K.

Front Microbiol. 2018 Feb 8;9:161. doi: 10.3389/fmicb.2018.00161. eCollection 2018.

5.

CRISPR/Cas9 Screens Reveal Requirements for Host Cell Sulfation and Fucosylation in Bacterial Type III Secretion System-Mediated Cytotoxicity.

Blondel CJ, Park JS, Hubbard TP, Pacheco AR, Kuehl CJ, Walsh MJ, Davis BM, Gewurz BE, Doench JG, Waldor MK.

Cell Host Microbe. 2016 Aug 10;20(2):226-37. doi: 10.1016/j.chom.2016.06.010. Epub 2016 Jul 21.

6.

Genetic analysis of Vibrio parahaemolyticus intestinal colonization.

Hubbard TP, Chao MC, Abel S, Blondel CJ, Abel Zur Wiesch P, Zhou X, Davis BM, Waldor MK.

Proc Natl Acad Sci U S A. 2016 May 31;113(22):6283-8. doi: 10.1073/pnas.1601718113. Epub 2016 May 16.

7.

Correction for Blondel et al., The Type VI Secretion System Encoded in Salmonella Pathogenicity Island 19 Is Required for Salmonella enterica Serotype Gallinarum Survival within Infected Macrophages.

Blondel CJ, Jiménez JC, Leiva LE, Álvarez SA, Pinto BI, Contreras F, Pezoa D, Santiviago CA, Contreras I.

Infect Immun. 2015 Oct;83(10):4175-6. doi: 10.1128/IAI.00541-15. No abstract available.

8.

Defined single-gene and multi-gene deletion mutant collections in Salmonella enterica sv Typhimurium.

Porwollik S, Santiviago CA, Cheng P, Long F, Desai P, Fredlund J, Srikumar S, Silva CA, Chu W, Chen X, Canals R, Reynolds MM, Bogomolnaya L, Shields C, Cui P, Guo J, Zheng Y, Endicott-Yazdani T, Yang HJ, Maple A, Ragoza Y, Blondel CJ, Valenzuela C, Andrews-Polymenis H, McClelland M.

PLoS One. 2014 Jul 9;9(7):e99820. doi: 10.1371/journal.pone.0099820. eCollection 2014.

9.

Only one of the two type VI secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts.

Pezoa D, Blondel CJ, Silva CA, Yang HJ, Andrews-Polymenis H, Santiviago CA, Contreras I.

Vet Res. 2014 Jan 9;45:2. doi: 10.1186/1297-9716-45-2.

10.

The type VI secretion system encoded in SPI-6 plays a role in gastrointestinal colonization and systemic spread of Salmonella enterica serovar Typhimurium in the chicken.

Pezoa D, Yang HJ, Blondel CJ, Santiviago CA, Andrews-Polymenis HL, Contreras I.

PLoS One. 2013 May 14;8(5):e63917. doi: 10.1371/journal.pone.0063917. Print 2013.

11.

The type VI secretion system encoded in Salmonella pathogenicity island 19 is required for Salmonella enterica serotype Gallinarum survival within infected macrophages.

Blondel CJ, Jiménez JC, Leiva LE, Alvarez SA, Pinto BI, Contreras F, Pezoa D, Santiviago CA, Contreras I.

Infect Immun. 2013 Apr;81(4):1207-20. doi: 10.1128/IAI.01165-12. Epub 2013 Jan 28. Erratum in: Infect Immun. 2015 Oct;83(10):4175-6.

12.

Chile's research planning falls short.

Astudillo P, Blondel CJ, Norambuena T, Soto K.

Science. 2012 Apr 27;336(6080):412. doi: 10.1126/science.336.6080.412-a. No abstract available.

PMID:
22539699
13.

Infection of mice by Salmonella enterica serovar Enteritidis involves additional genes that are absent in the genome of serovar Typhimurium.

Silva CA, Blondel CJ, Quezada CP, Porwollik S, Andrews-Polymenis HL, Toro CS, Zaldívar M, Contreras I, McClelland M, Santiviago CA.

Infect Immun. 2012 Feb;80(2):839-49. doi: 10.1128/IAI.05497-11. Epub 2011 Nov 14.

14.

Salmonella bongori provides insights into the evolution of the Salmonellae.

Fookes M, Schroeder GN, Langridge GC, Blondel CJ, Mammina C, Connor TR, Seth-Smith H, Vernikos GS, Robinson KS, Sanders M, Petty NK, Kingsley RA, Bäumler AJ, Nuccio SP, Contreras I, Santiviago CA, Maskell D, Barrow P, Humphrey T, Nastasi A, Roberts M, Frankel G, Parkhill J, Dougan G, Thomson NR.

PLoS Pathog. 2011 Aug;7(8):e1002191. doi: 10.1371/journal.ppat.1002191. Epub 2011 Aug 18.

15.

Type IV(B) pili are required for invasion but not for adhesion of Salmonella enterica serovar Typhi into BHK epithelial cells in a cystic fibrosis transmembrane conductance regulator-independent manner.

Bravo D, Blondel CJ, Hoare A, Leyton L, Valvano MA, Contreras I.

Microb Pathog. 2011 Nov;51(5):373-7. doi: 10.1016/j.micpath.2011.07.005. Epub 2011 Jul 18.

PMID:
21782926
16.

Contribution of the type VI secretion system encoded in SPI-19 to chicken colonization by Salmonella enterica serotypes Gallinarum and Enteritidis.

Blondel CJ, Yang HJ, Castro B, Chiang S, Toro CS, Zaldívar M, Contreras I, Andrews-Polymenis HL, Santiviago CA.

PLoS One. 2010 Jul 22;5(7):e11724. doi: 10.1371/journal.pone.0011724.

17.

Spontaneous excision of the Salmonella enterica serovar Enteritidis-specific defective prophage-like element phiSE14.

Santiviago CA, Blondel CJ, Quezada CP, Silva CA, Tobar PM, Porwollik S, McClelland M, Andrews-Polymenis HL, Toro CS, Zaldívar M, Contreras I.

J Bacteriol. 2010 Apr;192(8):2246-54. doi: 10.1128/JB.00270-09. Epub 2010 Feb 19.

18.

Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes.

Blondel CJ, Jiménez JC, Contreras I, Santiviago CA.

BMC Genomics. 2009 Aug 4;10:354. doi: 10.1186/1471-2164-10-354.

19.

Growth-phase regulation of lipopolysaccharide O-antigen chain length influences serum resistance in serovars of Salmonella.

Bravo D, Silva C, Carter JA, Hoare A, Alvarez SA, Blondel CJ, Zaldívar M, Valvano MA, Contreras I.

J Med Microbiol. 2008 Aug;57(Pt 8):938-46. doi: 10.1099/jmm.0.47848-0.

PMID:
18628492
20.

O-antigen modal chain length in Shigella flexneri 2a is growth-regulated through RfaH-mediated transcriptional control of the wzy gene.

Carter JA, Blondel CJ, Zaldívar M, Alvarez SA, Marolda CL, Valvano MA, Contreras I.

Microbiology. 2007 Oct;153(Pt 10):3499-507.

PMID:
17906147

Supplemental Content

Loading ...
Support Center