Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 68

1.

Insights into the mechanism of nitric oxide reductase from a FeB -depleted variant.

Kahle M, Blomberg MRA, Jareck S, Ädelroth P.

FEBS Lett. 2019 Jun;593(12):1351-1359. doi: 10.1002/1873-3468.13436. Epub 2019 May 29.

PMID:
31077353
2.

Active Site Midpoint Potentials in Different Cytochrome c Oxidase Families: A Computational Comparison.

Blomberg MRA.

Biochemistry. 2019 Apr 16;58(15):2028-2038. doi: 10.1021/acs.biochem.9b00093. Epub 2019 Mar 27.

PMID:
30892888
3.

A Systematic DFT Approach for Studying Mechanisms of Redox Active Enzymes.

Siegbahn PEM, Blomberg MRA.

Front Chem. 2018 Dec 21;6:644. doi: 10.3389/fchem.2018.00644. eCollection 2018.

4.

Mechanisms for enzymatic reduction of nitric oxide to nitrous oxide - A comparison between nitric oxide reductase and cytochrome c oxidase.

Blomberg MRA, Ädelroth P.

Biochim Biophys Acta Bioenerg. 2018 Nov;1859(11):1223-1234. doi: 10.1016/j.bbabio.2018.09.368. Epub 2018 Sep 21.

PMID:
30248312
5.

The mechanism for oxygen reduction in cytochrome c dependent nitric oxide reductase (cNOR) as obtained from a combination of theoretical and experimental results.

Blomberg MRA, Ädelroth P.

Biochim Biophys Acta Bioenerg. 2017 Nov;1858(11):884-894. doi: 10.1016/j.bbabio.2017.08.005. Epub 2017 Aug 8.

6.

Splitting of the O-O bond at the heme-copper catalytic site of respiratory oxidases.

Poiana F, von Ballmoos C, Gonska N, Blomberg MRA, Ädelroth P, Brzezinski P.

Sci Adv. 2017 Jun 16;3(6):e1700279. doi: 10.1126/sciadv.1700279. eCollection 2017 Jun.

7.

Can Reduction of NO to N2O in Cytochrome c Dependent Nitric Oxide Reductase Proceed through a Trans-Mechanism?

Blomberg MR.

Biochemistry. 2017 Jan 10;56(1):120-131. doi: 10.1021/acs.biochem.6b00788. Epub 2016 Dec 21.

PMID:
27959492
8.

Improved free energy profile for reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR).

Blomberg MR, Siegbahn PE.

J Comput Chem. 2016 Jul 15;37(19):1810-8. doi: 10.1002/jcc.24396. Epub 2016 Apr 29.

PMID:
27130561
9.

Mechanism of Oxygen Reduction in Cytochrome c Oxidase and the Role of the Active Site Tyrosine.

Blomberg MR.

Biochemistry. 2016 Jan 26;55(3):489-500. doi: 10.1021/acs.biochem.5b01205. Epub 2016 Jan 8.

PMID:
26690322
10.

Protonation of the binuclear active site in cytochrome c oxidase decreases the reduction potential of CuB.

Blomberg MR, Siegbahn PE.

Biochim Biophys Acta. 2015 Oct;1847(10):1173-80. doi: 10.1016/j.bbabio.2015.06.008. Epub 2015 Jun 11.

11.

How cytochrome c oxidase can pump four protons per oxygen molecule at high electrochemical gradient.

Blomberg MRA, Siegbahn PEM.

Biochim Biophys Acta. 2015 Mar;1847(3):364-376. doi: 10.1016/j.bbabio.2014.12.005. Epub 2014 Dec 18.

12.

An investigation of possible competing mechanisms for Ni-containing methyl-coenzyme M reductase.

Chen SL, Blomberg MR, Siegbahn PE.

Phys Chem Chem Phys. 2014 Jul 21;16(27):14029-35. doi: 10.1039/c4cp01483a. Epub 2014 Jun 5.

PMID:
24901069
13.

Proton pumping in cytochrome c oxidase: energetic requirements and the role of two proton channels.

Blomberg MR, Siegbahn PE.

Biochim Biophys Acta. 2014 Jul;1837(7):1165-77. doi: 10.1016/j.bbabio.2014.01.002. Epub 2014 Jan 11.

14.

Quantum chemical studies of mechanisms for metalloenzymes.

Blomberg MR, Borowski T, Himo F, Liao RZ, Siegbahn PE.

Chem Rev. 2014 Apr 9;114(7):3601-58. doi: 10.1021/cr400388t. Epub 2014 Jan 13. Review. No abstract available.

PMID:
24410477
15.

Energy Diagrams for Water Oxidation in Photosystem II Using Different Density Functionals.

Siegbahn PE, Blomberg MR.

J Chem Theory Comput. 2014 Jan 14;10(1):268-72. doi: 10.1021/ct401039h.

PMID:
26579909
16.

Mutations in the D-channel of cytochrome c oxidase causes leakage of the proton pump.

Siegbahn PE, Blomberg MR.

FEBS Lett. 2014 Feb 14;588(4):545-8. doi: 10.1016/j.febslet.2013.12.020. Epub 2013 Dec 31.

17.

Hydrolysis of the E2P phosphoenzyme of the Ca(2+)-ATPase: a theoretical study.

Rudbeck ME, Blomberg MR, Barth A.

J Phys Chem B. 2013 Aug 8;117(31):9224-32. doi: 10.1021/jp4049814. Epub 2013 Jul 26.

PMID:
23889518
18.

Why is the reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR) not electrogenic?

Blomberg MR, Siegbahn PE.

Biochim Biophys Acta. 2013 Jul;1827(7):826-33. doi: 10.1016/j.bbabio.2013.04.005. Epub 2013 Apr 23.

19.

Theoretical study of the oxidation of phenolates by the [Cu2O2(N,N'-di-tert-butylethylenediamine)2]2+ complex.

Liu YF, Yu JG, Siegbahn PE, Blomberg MR.

Chemistry. 2013 Feb 4;19(6):1942-54. doi: 10.1002/chem.201203052. Epub 2013 Jan 4.

PMID:
23292840
20.

Mechanism for N₂O generation in bacterial nitric oxide reductase: a quantum chemical study.

Blomberg MR, Siegbahn PE.

Biochemistry. 2012 Jun 26;51(25):5173-86. doi: 10.1021/bi300496e. Epub 2012 Jun 14.

PMID:
22680334
21.

The alkenyl migration mechanism catalyzed by extradiol dioxygenases: a hybrid DFT study.

Borowski T, Wójcik A, Miłaczewska A, Georgiev V, Blomberg MR, Siegbahn PE.

J Biol Inorg Chem. 2012 Aug;17(6):881-90. doi: 10.1007/s00775-012-0904-1. Epub 2012 May 24.

PMID:
22622485
22.

How is methane formed and oxidized reversibly when catalyzed by Ni-containing methyl-coenzyme M reductase?

Chen SL, Blomberg MR, Siegbahn PE.

Chemistry. 2012 May 14;18(20):6309-15. doi: 10.1002/chem.201200274. Epub 2012 Apr 4. Erratum in: Chemistry. 2012 Sep 24;18(39):12171.

PMID:
22488738
23.

The mechanism for proton pumping in cytochrome c oxidase from an electrostatic and quantum chemical perspective.

Blomberg MR, Siegbahn PE.

Biochim Biophys Acta. 2012 Apr;1817(4):495-505. doi: 10.1016/j.bbabio.2011.09.014. Epub 2011 Sep 28. Review.

24.

How is a co-methyl intermediate formed in the reaction of cobalamin-dependent methionine synthase? Theoretical evidence for a two-step methyl cation transfer mechanism.

Chen SL, Blomberg MR, Siegbahn PE.

J Phys Chem B. 2011 Apr 14;115(14):4066-77. doi: 10.1021/jp105729e. Epub 2011 Mar 21.

PMID:
21417249
25.

Theoretical insights into heme-catalyzed oxidation of cyclohexane to adipic acid.

Noack H, Georgiev V, Blomberg MR, Siegbahn PE, Johansson AJ.

Inorg Chem. 2011 Feb 21;50(4):1194-202. doi: 10.1021/ic101405u. Epub 2011 Jan 26.

PMID:
21268602
26.

Quantum chemical studies of proton-coupled electron transfer in metalloenzymes.

Siegbahn PE, Blomberg MR.

Chem Rev. 2010 Dec 8;110(12):7040-61. doi: 10.1021/cr100070p. Epub 2010 Aug 2. Review. No abstract available.

PMID:
20677732
27.

Significant van der Waals Effects in Transition Metal Complexes.

Siegbahn PE, Blomberg MR, Chen SL.

J Chem Theory Comput. 2010 Jul 13;6(7):2040-4. doi: 10.1021/ct100213e.

PMID:
26615933
28.

DFT study on the catalytic reactivity of a functional model complex for intradiol-cleaving dioxygenases.

Georgiev V, Noack H, Borowski T, Blomberg MR, Siegbahn PE.

J Phys Chem B. 2010 May 6;114(17):5878-85. doi: 10.1021/jp911217j.

PMID:
20387788
29.

Quantum chemistry as a tool in bioenergetics.

Blomberg MR, Siegbahn PE.

Biochim Biophys Acta. 2010 Feb;1797(2):129-42. doi: 10.1016/j.bbabio.2009.10.004. Epub 2009 Oct 22. Review.

30.

A combined picture from theory and experiments on water oxidation, oxygen reduction and proton pumping.

Siegbahn PE, Blomberg MR.

Dalton Trans. 2009 Aug 14;(30):5832-40. doi: 10.1039/b903007g. Epub 2009 May 5.

PMID:
19623382
31.

Is there a Ni-methyl intermediate in the mechanism of methyl-coenzyme M reductase?

Chen SL, Pelmenschikov V, Blomberg MR, Siegbahn PE.

J Am Chem Soc. 2009 Jul 29;131(29):9912-3. doi: 10.1021/ja904301f.

PMID:
19569621
32.

Infrared spectrum of phosphoenol pyruvate: computational and experimental studies.

Rudbeck ME, Kumar S, Mroginski MA, Lill SO, Blomberg MR, Barth A.

J Phys Chem A. 2009 Mar 26;113(12):2935-42. doi: 10.1021/jp809638u.

PMID:
19231879
33.
34.

Proton pumping mechanism in cytochrome c oxidase.

Siegbahn PE, Blomberg MR.

J Phys Chem A. 2008 Dec 18;112(50):12772-80. doi: 10.1021/jp801635c.

PMID:
18774786
35.

A comparison of the reaction mechanisms of iron- and manganese-containing 2,3-HPCD: an important spin transition for manganese.

Georgiev V, Borowski T, Blomberg MR, Siegbahn PE.

J Biol Inorg Chem. 2008 Aug;13(6):929-40. doi: 10.1007/s00775-008-0380-9. Epub 2008 May 6.

PMID:
18458966
36.

Reaction mechanism of apocarotenoid oxygenase (ACO): a DFT study.

Borowski T, Blomberg MR, Siegbahn PE.

Chemistry. 2008;14(7):2264-76. doi: 10.1002/chem.200701344.

PMID:
18181127
37.

O-O bond cleavage in dinuclear peroxo complexes of iron porphyrins: a quantum chemical study.

Blomberg MR, Johansson AJ, Siegbahn PE.

Inorg Chem. 2007 Sep 17;46(19):7992-7. Epub 2007 Aug 14.

PMID:
17696338
38.

Energy diagrams and mechanism for proton pumping in cytochrome c oxidase.

Siegbahn PE, Blomberg MR.

Biochim Biophys Acta. 2007 Sep;1767(9):1143-56. Epub 2007 Jul 12.

39.

Exploring pathways and barriers for coupled ET/PT in cytochrome c oxidase: a general framework for examining energetics and mechanistic alternatives.

Olsson MH, Siegbahn PE, Blomberg MR, Warshel A.

Biochim Biophys Acta. 2007 Mar;1767(3):244-60. Epub 2007 Jan 30.

40.
41.

Theoretical study of the reduction of nitric oxide in an A-type flavoprotein.

Blomberg LM, Blomberg MR, Siegbahn PE.

J Biol Inorg Chem. 2007 Jan;12(1):79-89. Epub 2006 Sep 7.

PMID:
16957917
43.

Reduction of nitric oxide in bacterial nitric oxide reductase--a theoretical model study.

Blomberg LM, Blomberg MR, Siegbahn PE.

Biochim Biophys Acta. 2006 Apr;1757(4):240-52. Epub 2006 Apr 21.

44.

Theoretical studies of enzyme mechanisms involving high-valent iron intermediates.

Bassan A, Blomberg MR, Borowski T, Siegbahn PE.

J Inorg Biochem. 2006 Apr;100(4):727-43. Epub 2006 Mar 2. Review.

PMID:
16513176
45.

Different types of biological proton transfer reactions studied by quantum chemical methods.

Blomberg MR, Siegbahn PE.

Biochim Biophys Acta. 2006 Aug;1757(8):969-80. Epub 2006 Jan 25. Review.

46.

Density functional study of the O2 binding to [CuI(TPAR)]+ (TPA = tris(2-pyridylmethyl)amine) in THF and EtCN.

Johansson AJ, Blomberg MR, Siegbahn PE.

Inorg Chem. 2006 Feb 20;45(4):1491-7.

PMID:
16471960
47.

A theoretical study on nitric oxide reductase activity in a ba(3)-type heme-copper oxidase.

Blomberg LM, Blomberg MR, Siegbahn PE.

Biochim Biophys Acta. 2006 Jan;1757(1):31-46. Epub 2005 Dec 7.

48.

Methods and models for studying mechanisms of redox-active enzymes.

Siegbahn PE, Blomberg MR.

Philos Trans A Math Phys Eng Sci. 2005 Apr 15;363(1829):847-60; discussion 1035-40. Review.

PMID:
15901539
49.

Two faces of a biomimetic non-heme HO-Fe(v)=O oxidant: olefin epoxidation versus cis-dihydroxylation.

Bassan A, Blomberg MR, Siegbahn PE, Que L Jr.

Angew Chem Int Ed Engl. 2005 May 6;44(19):2939-41. No abstract available.

PMID:
15812868
50.

A theoretical study on the binding of O(2), NO and CO to heme proteins.

Blomberg LM, Blomberg MR, Siegbahn PE.

J Inorg Biochem. 2005 Apr;99(4):949-58.

PMID:
15811512

Supplemental Content

Loading ...
Support Center