Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 22

1.

Proteomic study of the membrane components of signalling cascades of Botrytis cinerea controlled by phosphorylation.

Escobar-Niño A, Liñeiro E, Amil F, Carrasco R, Chiva C, Fuentes C, Blanco-Ulate B, Cantoral Fernández JM, Sabidó E, Fernández-Acero FJ.

Sci Rep. 2019 Jul 8;9(1):9860. doi: 10.1038/s41598-019-46270-0.

2.

Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea.

Petrasch S, Knapp SJ, van Kan JAL, Blanco-Ulate B.

Mol Plant Pathol. 2019 Jun;20(6):877-892. doi: 10.1111/mpp.12794. Epub 2019 Apr 4. Review.

3.

Infection Strategies Deployed by Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer as a Function of Tomato Fruit Ripening Stage.

Petrasch S, Silva CJ, Mesquida-Pesci SD, Gallegos K, van den Abeele C, Papin V, Fernandez-Acero FJ, Knapp SJ, Blanco-Ulate B.

Front Plant Sci. 2019 Mar 1;10:223. doi: 10.3389/fpls.2019.00223. eCollection 2019.

4.

Iso-Seq Allows Genome-Independent Transcriptome Profiling of Grape Berry Development.

Minio A, Massonnet M, Figueroa-Balderas R, Vondras AM, Blanco-Ulate B, Cantu D.

G3 (Bethesda). 2019 Mar 7;9(3):755-767. doi: 10.1534/g3.118.201008.

5.

Characterization of CRISPR Mutants Targeting Genes Modulating Pectin Degradation in Ripening Tomato.

Wang D, Samsulrizal NH, Yan C, Allcock NS, Craigon J, Blanco-Ulate B, Ortega-Salazar I, Marcus SE, Bagheri HM, Perez Fons L, Fraser PD, Foster T, Fray R, Knox JP, Seymour GB.

Plant Physiol. 2019 Feb;179(2):544-557. doi: 10.1104/pp.18.01187. Epub 2018 Nov 20.

6.

Exogenous Abscisic Acid Promotes Anthocyanin Biosynthesis and Increased Expression of Flavonoid Synthesis Genes in Vitis vinifera × Vitis labrusca Table Grapes in a Subtropical Region.

Koyama R, Roberto SR, de Souza RT, Borges WFS, Anderson M, Waterhouse AL, Cantu D, Fidelibus MW, Blanco-Ulate B.

Front Plant Sci. 2018 Mar 26;9:323. doi: 10.3389/fpls.2018.00323. eCollection 2018.

7.

Lipopolysaccharide O-antigen delays plant innate immune recognition of Xylella fastidiosa.

Rapicavoli JN, Blanco-Ulate B, Muszyński A, Figueroa-Balderas R, Morales-Cruz A, Azadi P, Dobruchowska JM, Castro C, Cantu D, Roper MC.

Nat Commun. 2018 Jan 26;9(1):390. doi: 10.1038/s41467-018-02861-5.

8.

Xylella fastidiosa: an examination of a re-emerging plant pathogen.

Rapicavoli J, Ingel B, Blanco-Ulate B, Cantu D, Roper C.

Mol Plant Pathol. 2018 Apr;19(4):786-800. doi: 10.1111/mpp.12585. Epub 2017 Oct 24.

9.

Red blotch disease alters grape berry development and metabolism by interfering with the transcriptional and hormonal regulation of ripening.

Blanco-Ulate B, Hopfer H, Figueroa-Balderas R, Ye Z, Rivero RM, Albacete A, Pérez-Alfocea F, Koyama R, Anderson MM, Smith RJ, Ebeler SE, Cantu D.

J Exp Bot. 2017 Feb 1;68(5):1225-1238. doi: 10.1093/jxb/erw506.

10.

Corrigendum: Genetic improvement of tomato by targeted control of fruit softening.

Uluisik S, Chapman NH, Smith R, Poole M, Adams G, Gillis RB, Besong TM, Sheldon J, Stiegelmeyer S, Perez L, Samsulrizal N, Wang D, Fisk ID, Yang N, Baxter C, Rickett D, Fray R, Blanco-Ulate B, Powell AL, Harding SE, Craigon J, Rose JK, Fich EA, Sun L, Domozych DS, Fraser PD, Tucker GA, Grierson D, Seymour GB.

Nat Biotechnol. 2016 Oct 11;34(10):1072. doi: 10.1038/nbt1016-1072d. No abstract available.

PMID:
27727231
11.

Genetic improvement of tomato by targeted control of fruit softening.

Uluisik S, Chapman NH, Smith R, Poole M, Adams G, Gillis RB, Besong TM, Sheldon J, Stiegelmeyer S, Perez L, Samsulrizal N, Wang D, Fisk ID, Yang N, Baxter C, Rickett D, Fray R, Blanco-Ulate B, Powell AL, Harding SE, Craigon J, Rose JK, Fich EA, Sun L, Domozych DS, Fraser PD, Tucker GA, Grierson D, Seymour GB.

Nat Biotechnol. 2016 Sep;34(9):950-2. doi: 10.1038/nbt.3602. Epub 2016 Jul 25.

PMID:
27454737
12.

Comparative transcriptomics of Central Asian Vitis vinifera accessions reveals distinct defense strategies against powdery mildew.

Amrine KC, Blanco-Ulate B, Riaz S, Pap D, Jones L, Figueroa-Balderas R, Walker MA, Cantu D.

Hortic Res. 2015 Aug 26;2:15037. doi: 10.1038/hortres.2015.37. eCollection 2015.

13.

Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot.

Blanco-Ulate B, Amrine KC, Collins TS, Rivero RM, Vicente AR, Morales-Cruz A, Doyle CL, Ye Z, Allen G, Heymann H, Ebeler SE, Cantu D.

Plant Physiol. 2015 Dec;169(4):2422-43. doi: 10.1104/pp.15.00852. Epub 2015 Oct 8.

14.

Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens.

Morales-Cruz A, Amrine KC, Blanco-Ulate B, Lawrence DP, Travadon R, Rolshausen PE, Baumgartner K, Cantu D.

BMC Genomics. 2015 Jun 19;16:469. doi: 10.1186/s12864-015-1624-z.

15.

Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis.

Amrine KC, Blanco-Ulate B, Cantu D.

PLoS One. 2015 Mar 2;10(3):e0118731. doi: 10.1371/journal.pone.0118731. eCollection 2015.

16.

Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts.

Blanco-Ulate B, Morales-Cruz A, Amrine KC, Labavitch JM, Powell AL, Cantu D.

Front Plant Sci. 2014 Sep 3;5:435. doi: 10.3389/fpls.2014.00435. eCollection 2014.

17.

Draft Genome Sequence of the Ascomycete Phaeoacremonium aleophilum Strain UCR-PA7, a Causal Agent of the Esca Disease Complex in Grapevines.

Blanco-Ulate B, Rolshausen P, Cantu D.

Genome Announc. 2013 Jun 27;1(3). pii: e00390-13. doi: 10.1128/genomeA.00390-13.

18.

Draft Genome Sequence of Neofusicoccum parvum Isolate UCR-NP2, a Fungal Vascular Pathogen Associated with Grapevine Cankers.

Blanco-Ulate B, Rolshausen P, Cantu D.

Genome Announc. 2013 Jun 13;1(3). pii: e00339-13. doi: 10.1128/genomeA.00339-13.

19.

Draft Genome Sequence of the Grapevine Dieback Fungus Eutypa lata UCR-EL1.

Blanco-Ulate B, Rolshausen PE, Cantu D.

Genome Announc. 2013 May 30;1(3). pii: e00228-13. doi: 10.1128/genomeA.00228-13.

20.

Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea.

Blanco-Ulate B, Vincenti E, Powell AL, Cantu D.

Front Plant Sci. 2013 May 14;4:142. doi: 10.3389/fpls.2013.00142. eCollection 2013.

21.

Draft Genome Sequence of Botrytis cinerea BcDW1, Inoculum for Noble Rot of Grape Berries.

Blanco-Ulate B, Allen G, Powell AL, Cantu D.

Genome Announc. 2013 May 23;1(3). pii: e00252-13. doi: 10.1128/genomeA.00252-13.

22.

Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene.

Cantu D, Blanco-Ulate B, Yang L, Labavitch JM, Bennett AB, Powell AL.

Plant Physiol. 2009 Jul;150(3):1434-49. doi: 10.1104/pp.109.138701. Epub 2009 May 22.

Supplemental Content

Loading ...
Support Center