Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 200

1.

The active site of the Mycobacterium tuberculosis branched-chain amino acid biosynthesis enzyme dihydroxyacid dehydratase contains a 2Fe-2S cluster.

Bashiri G, Grove TL, Hegde SS, Lagautriere T, Gerfen GJ, Almo SC, Squire CJ, Blanchard JS, Baker EN.

J Biol Chem. 2019 Aug 30;294(35):13158-13170. doi: 10.1074/jbc.RA119.009498. Epub 2019 Jul 16.

PMID:
31315931
2.

Biochemical Characterization of the Mycobacterium smegmatis Threonine Deaminase.

Favrot L, Amorim Franco TM, Blanchard JS.

Biochemistry. 2018 Oct 16;57(41):6003-6012. doi: 10.1021/acs.biochem.8b00871. Epub 2018 Oct 3.

PMID:
30226377
3.

Bacterial Branched-Chain Amino Acid Biosynthesis: Structures, Mechanisms, and Drugability.

Amorim Franco TM, Blanchard JS.

Biochemistry. 2017 Nov 7;56(44):5849-5865. doi: 10.1021/acs.biochem.7b00849. Review.

4.

Mechanistic Characterization of Escherichia coli l-Aspartate Oxidase from Kinetic Isotope Effects.

Chow C, Hegde S, Blanchard JS.

Biochemistry. 2017 Aug 8;56(31):4044-4052. doi: 10.1021/acs.biochem.7b00307. Epub 2017 Jul 26.

5.

Mechanism-Based Inhibition of the Mycobacterium tuberculosis Branched-Chain Aminotransferase by d- and l-Cycloserine.

Amorim Franco TM, Favrot L, Vergnolle O, Blanchard JS.

ACS Chem Biol. 2017 May 19;12(5):1235-1244. doi: 10.1021/acschembio.7b00142. Epub 2017 Mar 16.

6.

Identification of Mycobacterial RplJ/L10 and RpsA/S1 Proteins as Novel Targets for CD4+ T Cells.

Johnson AJ, Kennedy SC, Lindestam Arlehamn CS, Goldberg MF, Saini NK, Xu J, Paul S, Hegde SS, Blanchard JS, Chan J, Jacobs WR Jr, Sette A, Porcelli SA.

Infect Immun. 2017 Mar 23;85(4). pii: e01023-16. doi: 10.1128/IAI.01023-16. Print 2017 Apr.

7.

Chemical Mechanism of the Branched-Chain Aminotransferase IlvE from Mycobacterium tuberculosis.

Amorim Franco TM, Hegde S, Blanchard JS.

Biochemistry. 2016 Nov 15;55(45):6295-6303. Epub 2016 Nov 2.

8.

Post-translational Acetylation of MbtA Modulates Mycobacterial Siderophore Biosynthesis.

Vergnolle O, Xu H, Tufariello JM, Favrot L, Malek AA, Jacobs WR Jr, Blanchard JS.

J Biol Chem. 2016 Oct 14;291(42):22315-22326. Epub 2016 Aug 26.

9.

Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis.

Noy T, Vergnolle O, Hartman TE, Rhee KY, Jacobs WR Jr, Berney M, Blanchard JS.

J Biol Chem. 2016 Mar 25;291(13):7060-9. doi: 10.1074/jbc.M115.707430. Epub 2016 Feb 8.

10.

Bacterial GCN5-Related N-Acetyltransferases: From Resistance to Regulation.

Favrot L, Blanchard JS, Vergnolle O.

Biochemistry. 2016 Feb 23;55(7):989-1002. doi: 10.1021/acs.biochem.5b01269. Epub 2016 Feb 9. Review.

11.

Kinetic and Structural Characterization of the Interaction of 6-Methylidene Penem 2 with the β-Lactamase from Mycobacterium tuberculosis.

Hazra S, Kurz SG, Wolff K, Nguyen L, Bonomo RA, Blanchard JS.

Biochemistry. 2015 Sep 15;54(36):5657-64. doi: 10.1021/acs.biochem.5b00698. Epub 2015 Aug 31.

12.

Inhibiting the β-Lactamase of Mycobacterium tuberculosis (Mtb) with Novel Boronic Acid Transition-State Inhibitors (BATSIs).

Kurz SG, Hazra S, Bethel CR, Romagnoli C, Caselli E, Prati F, Blanchard JS, Bonomo RA.

ACS Infect Dis. 2015 Jun 12;1(6):234-42. doi: 10.1021/acsinfecdis.5b00003. Epub 2015 Apr 15.

PMID:
27622739
13.

Tebipenem, a new carbapenem antibiotic, is a slow substrate that inhibits the β-lactamase from Mycobacterium tuberculosis.

Hazra S, Xu H, Blanchard JS.

Biochemistry. 2014 Jun 10;53(22):3671-8. doi: 10.1021/bi500339j. Epub 2014 May 29.

14.

Acetylation of acetyl-CoA synthetase from Mycobacterium tuberculosis leads to specific inactivation of the adenylation reaction.

Noy T, Xu H, Blanchard JS.

Arch Biochem Biophys. 2014 May 15;550-551:42-9. doi: 10.1016/j.abb.2014.04.004. Epub 2014 Apr 18.

15.

Solvent isotope-induced equilibrium perturbation for isocitrate lyase.

Quartararo CE, Hadi T, Cahill SM, Blanchard JS.

Biochemistry. 2013 Dec 23;52(51):9286-93. doi: 10.1021/bi4013319. Epub 2013 Nov 26.

16.

Structure of MurNAc 6-phosphate hydrolase (MurQ) from Haemophilus influenzae with a bound inhibitor.

Hadi T, Hazra S, Tanner ME, Blanchard JS.

Biochemistry. 2013 Dec 23;52(51):9358-66. doi: 10.1021/bi4010446. Epub 2013 Nov 22.

17.

Kinetic and mechanistic characterization of the glyceraldehyde 3-phosphate dehydrogenase from Mycobacterium tuberculosis.

Wolfson-Stofko B, Hadi T, Blanchard JS.

Arch Biochem Biophys. 2013 Dec;540(1-2):53-61. doi: 10.1016/j.abb.2013.10.007. Epub 2013 Oct 23.

18.

Can inhibitor-resistant substitutions in the Mycobacterium tuberculosis β-Lactamase BlaC lead to clavulanate resistance?: a biochemical rationale for the use of β-lactam-β-lactamase inhibitor combinations.

Kurz SG, Wolff KA, Hazra S, Bethel CR, Hujer AM, Smith KM, Xu Y, Tremblay LW, Blanchard JS, Nguyen L, Bonomo RA.

Antimicrob Agents Chemother. 2013 Dec;57(12):6085-96. doi: 10.1128/AAC.01253-13. Epub 2013 Sep 23.

19.

Mechanism and regulation of mycobactin fatty acyl-AMP ligase FadD33.

Vergnolle O, Xu H, Blanchard JS.

J Biol Chem. 2013 Sep 27;288(39):28116-25. doi: 10.1074/jbc.M113.495549. Epub 2013 Aug 9.

20.

Kinetic and isotopic characterization of L-proline dehydrogenase from Mycobacterium tuberculosis.

Serrano H, Blanchard JS.

Biochemistry. 2013 Jul 23;52(29):5009-15. doi: 10.1021/bi400338f. Epub 2013 Jul 8.

21.

Kinetic characterization of hydrolysis of nitrocefin, cefoxitin, and meropenem by β-lactamase from Mycobacterium tuberculosis.

Chow C, Xu H, Blanchard JS.

Biochemistry. 2013 Jun 11;52(23):4097-104. doi: 10.1021/bi400177y. Epub 2013 May 30.

22.

Structural, kinetic and chemical mechanism of isocitrate dehydrogenase-1 from Mycobacterium tuberculosis.

Quartararo CE, Hazra S, Hadi T, Blanchard JS.

Biochemistry. 2013 Mar 12;52(10):1765-75. doi: 10.1021/bi400037w. Epub 2013 Feb 27.

23.

One substrate, five products: reactions catalyzed by the dihydroneopterin aldolase from Mycobacterium tuberculosis.

Czekster CM, Blanchard JS.

J Am Chem Soc. 2012 Dec 5;134(48):19758-71. doi: 10.1021/ja308350f. Epub 2012 Nov 26.

24.

NXL104 irreversibly inhibits the β-lactamase from Mycobacterium tuberculosis.

Xu H, Hazra S, Blanchard JS.

Biochemistry. 2012 Jun 5;51(22):4551-7. Epub 2012 May 22.

25.

Two parallel pathways in the kinetic sequence of the dihydrofolate reductase from Mycobacterium tuberculosis.

Czekster CM, Vandemeulebroucke A, Blanchard JS.

Biochemistry. 2011 Aug 16;50(32):7045-56. doi: 10.1021/bi200608n. Epub 2011 Jul 22.

26.

Kinetic and chemical mechanism of malate synthase from Mycobacterium tuberculosis.

Quartararo CE, Blanchard JS.

Biochemistry. 2011 Aug 16;50(32):6879-87. doi: 10.1021/bi2007299. Epub 2011 Jul 18.

27.

Reversible acetylation and inactivation of Mycobacterium tuberculosis acetyl-CoA synthetase is dependent on cAMP.

Xu H, Hegde SS, Blanchard JS.

Biochemistry. 2011 Jul 5;50(26):5883-92. doi: 10.1021/bi200156t. Epub 2011 Jun 10.

28.

Structure of QnrB1, a plasmid-mediated fluoroquinolone resistance factor.

Vetting MW, Hegde SS, Wang M, Jacoby GA, Hooper DC, Blanchard JS.

J Biol Chem. 2011 Jul 15;286(28):25265-73. doi: 10.1074/jbc.M111.226936. Epub 2011 May 19.

29.

Pentapeptide-repeat proteins that act as topoisomerase poison resistance factors have a common dimer interface.

Vetting MW, Hegde SS, Zhang Y, Blanchard JS.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Mar 1;67(Pt 3):296-302. doi: 10.1107/S1744309110053315. Epub 2011 Feb 18.

30.

Kinetic and chemical mechanism of the dihydrofolate reductase from Mycobacterium tuberculosis.

Czekster CM, Vandemeulebroucke A, Blanchard JS.

Biochemistry. 2011 Jan 25;50(3):367-75. Epub 2010 Dec 29.

32.

Structural and biochemical analysis of the pentapeptide repeat protein EfsQnr, a potent DNA gyrase inhibitor.

Hegde SS, Vetting MW, Mitchenall LA, Maxwell A, Blanchard JS.

Antimicrob Agents Chemother. 2011 Jan;55(1):110-7. doi: 10.1128/AAC.01158-10. Epub 2010 Oct 11.

33.

Kinetics and inhibition of nicotinamidase from Mycobacterium tuberculosis.

Seiner DR, Hegde SS, Blanchard JS.

Biochemistry. 2010 Nov 9;49(44):9613-9. doi: 10.1021/bi1011157.

34.

The structure and mechanism of the Mycobacterium tuberculosis cyclodityrosine synthetase.

Vetting MW, Hegde SS, Blanchard JS.

Nat Chem Biol. 2010 Nov;6(11):797-9. doi: 10.1038/nchembio.440. Epub 2010 Sep 19.

35.

The chemical biology of new drugs in the development for tuberculosis.

Barry CE 3rd, Blanchard JS.

Curr Opin Chem Biol. 2010 Aug;14(4):456-66. doi: 10.1016/j.cbpa.2010.04.008. Epub 2010 May 7. Review.

36.

UDP-(5F)-GlcNAc acts as a slow-binding inhibitor of MshA, a retaining glycosyltransferase.

Frantom PA, Coward JK, Blanchard JS.

J Am Chem Soc. 2010 May 19;132(19):6626-7. doi: 10.1021/ja101231a.

37.

Kinetic and inhibition studies of dihydroxybenzoate-AMP ligase from Escherichia coli.

Sikora AL, Wilson DJ, Aldrich CC, Blanchard JS.

Biochemistry. 2010 May 4;49(17):3648-57. doi: 10.1021/bi100350c.

38.

Biochemical and structural characterization of Mycobacterium tuberculosis beta-lactamase with the carbapenems ertapenem and doripenem.

Tremblay LW, Fan F, Blanchard JS.

Biochemistry. 2010 May 4;49(17):3766-73. doi: 10.1021/bi100232q.

39.

Catalysis and regulation.

Noble M, Blanchard JS.

Curr Opin Struct Biol. 2009 Dec;19(6):641-2. doi: 10.1016/j.sbi.2009.10.014. Epub 2009 Nov 22. No abstract available.

PMID:
19932612
40.

The 1.9 A structure of the branched-chain amino-acid transaminase (IlvE) from Mycobacterium tuberculosis.

Tremblay LW, Blanchard JS.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Nov 1;65(Pt 11):1071-7. doi: 10.1107/S1744309109036690. Epub 2009 Oct 13.

41.

Buffers: principles and practice.

Stoll VS, Blanchard JS.

Methods Enzymol. 2009;463:43-56. doi: 10.1016/S0076-6879(09)63006-8. No abstract available.

PMID:
19892166
42.

Enterobactin synthetase-catalyzed formation of P(1),P(3)-diadenosine-5'-tetraphosphate.

Sikora AL, Cahill SM, Blanchard JS.

Biochemistry. 2009 Nov 24;48(46):10827-9. doi: 10.1021/bi901680m.

43.

Structures and mechanisms of the mycothiol biosynthetic enzymes.

Fan F, Vetting MW, Frantom PA, Blanchard JS.

Curr Opin Chem Biol. 2009 Oct;13(4):451-9. doi: 10.1016/j.cbpa.2009.07.018. Epub 2009 Aug 19. Review.

44.
45.
46.

Gemfibrozil inhibits Legionella pneumophila and Mycobacterium tuberculosis enoyl coenzyme A reductases and blocks intracellular growth of these bacteria in macrophages.

Reich-Slotky R, Kabbash CA, Della-Latta P, Blanchard JS, Feinmark SJ, Freeman S, Kaplan G, Shuman HA, Silverstein SC.

J Bacteriol. 2009 Aug;191(16):5262-71. doi: 10.1128/JB.00175-09. Epub 2009 May 8.

47.

Crystallization of a pentapeptide-repeat protein by reductive cyclic pentylation of free amines with glutaraldehyde.

Vetting MW, Hegde SS, Blanchard JS.

Acta Crystallogr D Biol Crystallogr. 2009 May;65(Pt 5):462-9. doi: 10.1107/S0907444909008324. Epub 2009 Apr 18.

48.

Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis.

Hugonnet JE, Tremblay LW, Boshoff HI, Barry CE 3rd, Blanchard JS.

Science. 2009 Feb 27;323(5918):1215-8. doi: 10.1126/science.1167498.

49.

Kinetic evidence for interdomain communication in the allosteric regulation of alpha-isopropylmalate synthase from Mycobacterium tuberculosis.

de Carvalho LP, Frantom PA, Argyrou A, Blanchard JS.

Biochemistry. 2009 Mar 10;48(9):1996-2004. doi: 10.1021/bi801707t.

50.

The 1.6 A crystal structure of Mycobacterium smegmatis MshC: the penultimate enzyme in the mycothiol biosynthetic pathway.

Tremblay LW, Fan F, Vetting MW, Blanchard JS.

Biochemistry. 2008 Dec 16;47(50):13326-35. doi: 10.1021/bi801708f.

Supplemental Content

Loading ...
Support Center