Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 20

1.

Implications of the expression of Enterococcus faecalis citrate fermentation genes during infection.

Martino GP, Perez CE, Magni C, Blancato VS.

PLoS One. 2018 Oct 18;13(10):e0205787. doi: 10.1371/journal.pone.0205787. eCollection 2018.

2.

Safety assessment and functional properties of four enterococci strains isolated from regional Argentinean cheese.

Martino GP, Espariz M, Gallina Nizo G, Esteban L, Blancato VS, Magni C.

Int J Food Microbiol. 2018 Jul 20;277:1-9. doi: 10.1016/j.ijfoodmicro.2018.04.012. Epub 2018 Apr 11.

PMID:
29669304
3.

Enzymes Required for Maltodextrin Catabolism in Enterococcus faecalis Exhibit Novel Activities.

Joyet P, Mokhtari A, Riboulet-Bisson E, Blancato VS, Espariz M, Magni C, Hartke A, Deutscher J, Sauvageot N.

Appl Environ Microbiol. 2017 Jun 16;83(13). pii: e00038-17. doi: 10.1128/AEM.00038-17. Print 2017 Jul 1.

4.

Enterococcus faecalis Uses a Phosphotransferase System Permease and a Host Colonization-Related ABC Transporter for Maltodextrin Uptake.

Sauvageot N, Mokhtari A, Joyet P, Budin-Verneuil A, Blancato VS, Repizo GD, Henry C, Pikis A, Thompson J, Magni C, Hartke A, Deutscher J.

J Bacteriol. 2017 Apr 11;199(9). pii: e00878-16. doi: 10.1128/JB.00878-16. Print 2017 May 1.

5.

Functional Analysis of the Citrate Activator CitO from Enterococcus faecalis Implicates a Divalent Metal in Ligand Binding.

Blancato VS, Pagliai FA, Magni C, Gonzalez CF, Lorca GL.

Front Microbiol. 2016 Feb 9;7:101. doi: 10.3389/fmicb.2016.00101. eCollection 2016.

6.

Draft Genome Sequences of Four Enterococcus faecium Strains Isolated from Argentine Cheese.

Martino GP, Quintana IM, Espariz M, Blancato VS, Gallina Nizo G, Esteban L, Magni C.

Genome Announc. 2016 Feb 4;4(1). pii: e01576-15. doi: 10.1128/genomeA.01576-15.

7.

Draft Genome Sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a Citrate-Fermenting Strain.

Zuljan F, Espariz M, Blancato VS, Esteban L, Alarcón S, Magni C.

Genome Announc. 2016 Feb 4;4(1). pii: e01575-15. doi: 10.1128/genomeA.01575-15.

8.

Aroma compounds generation in citrate metabolism of Enterococcus faecium: Genetic characterization of type I citrate gene cluster.

Martino GP, Quintana IM, Espariz M, Blancato VS, Magni C.

Int J Food Microbiol. 2016 Feb 2;218:27-37. doi: 10.1016/j.ijfoodmicro.2015.11.004. Epub 2015 Nov 14.

PMID:
26594791
9.

Genomic comparative analysis of the environmental Enterococcus mundtii against enterococcal representative species.

Repizo GD, Espariz M, Blancato VS, Suárez CA, Esteban L, Magni C.

BMC Genomics. 2014 Jun 18;15:489. doi: 10.1186/1471-2164-15-489.

10.

Expression of the agmatine deiminase pathway in Enterococcus faecalis is activated by the AguR regulator and repressed by CcpA and PTS(Man) systems.

Suárez C, Espariz M, Blancato VS, Magni C.

PLoS One. 2013 Oct 14;8(10):e76170. doi: 10.1371/journal.pone.0076170. eCollection 2013.

11.

Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose 6'-phosphate phosphatase (MapP).

Mokhtari A, Blancato VS, Repizo GD, Henry C, Pikis A, Bourand A, de Fátima Álvarez M, Immel S, Mechakra-Maza A, Hartke A, Thompson J, Magni C, Deutscher J.

Mol Microbiol. 2013 Apr;88(2):234-53. doi: 10.1111/mmi.12183. Epub 2013 Mar 14.

12.

Biochemical and genetic characterization of the Enterococcus faecalis oxaloacetate decarboxylase complex.

Repizo GD, Blancato VS, Mortera P, Lolkema JS, Magni C.

Appl Environ Microbiol. 2013 May;79(9):2882-90. doi: 10.1128/AEM.03980-12. Epub 2013 Feb 22.

13.

Draft genome sequence of Enterococcus mundtii CRL1656.

Magni C, Espeche C, Repizo GD, Saavedra L, Suárez CA, Blancato VS, Espariz M, Esteban L, Raya RR, Font de Valdez G, Vignolo G, Mozzi F, Taranto MP, Hebert EM, Nader-Macías ME, Sesma F.

J Bacteriol. 2012 Jan;194(2):550. doi: 10.1128/JB.06415-11.

14.

CcpA represses the expression of the divergent cit operons of Enterococcus faecalis through multiple cre sites.

Suárez CA, Blancato VS, Poncet S, Deutscher J, Magni C.

BMC Microbiol. 2011 Oct 11;11:227. doi: 10.1186/1471-2180-11-227.

15.

A chimeric vector for efficient chromosomal modification in Enterococcus faecalis and other lactic acid bacteria.

Blancato VS, Magni C.

Lett Appl Microbiol. 2010 May;50(5):542-6. doi: 10.1111/j.1472-765X.2010.02815.x. Epub 2010 Feb 1.

16.

Transcriptional regulation of the citrate gene cluster of Enterococcus faecalis Involves the GntR family transcriptional activator CitO.

Blancato VS, Repizo GD, Suárez CA, Magni C.

J Bacteriol. 2008 Nov;190(22):7419-30. doi: 10.1128/JB.01704-07. Epub 2008 Sep 19.

17.

Agmatine deiminase pathway genes in Lactobacillus brevis are linked to the tyrosine decarboxylation operon in a putative acid resistance locus.

Lucas PM, Blancato VS, Claisse O, Magni C, Lolkema JS, Lonvaud-Funel A.

Microbiology. 2007 Jul;153(Pt 7):2221-30.

PMID:
17600066
18.

Functional characterization and Me ion specificity of a Ca-citrate transporter from Enterococcus faecalis.

Blancato VS, Magni C, Lolkema JS.

FEBS J. 2006 Nov;273(22):5121-30. Epub 2006 Oct 17.

19.

Catabolite repression of the citST two-component system in Bacillus subtilis.

Repizo GD, Blancato VS, Sender PD, Lolkema J, Magni C.

FEMS Microbiol Lett. 2006 Jul;260(2):224-31.

20.

On the occurrence of thioredoxin in Trypanosoma cruzi.

Piattoni CV, Blancato VS, Miglietta H, Iglesias AA, Guerrero SA.

Acta Trop. 2006 Feb;97(2):151-60. Epub 2005 Nov 28.

PMID:
16310752

Supplemental Content

Loading ...
Support Center