Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 60

1.

The transcriptome of Darwin's bark spider silk glands predicts proteins contributing to dragline silk toughness.

Garb JE, Haney RA, Schwager EE, Gregorič M, Kuntner M, Agnarsson I, Blackledge TA.

Commun Biol. 2019 Jul 25;2:275. doi: 10.1038/s42003-019-0496-1. eCollection 2019.

2.

Functional trade-offs in cribellate silk mediated by spinning behavior.

Michalik P, Piorkowski D, Blackledge TA, Ramírez MJ.

Sci Rep. 2019 Jun 24;9(1):9092. doi: 10.1038/s41598-019-45552-x.

3.

External power amplification drives prey capture in a spider web.

Han SI, Astley HC, Maksuta DD, Blackledge TA.

Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):12060-12065. doi: 10.1073/pnas.1821419116. Epub 2019 May 13.

PMID:
31085643
4.

Supersaturation with water explains the unusual adhesion of aggregate glue in the webs of the moth-specialist spider, Cyrtarachne akirai.

Diaz C, Tanikawa A, Miyashita T, Amarpuri G, Jain D, Dhinojwala A, Blackledge TA.

R Soc Open Sci. 2018 Nov 7;5(11):181296. doi: 10.1098/rsos.181296. eCollection 2018 Nov.

5.

Silk structure rather than tensile mechanics explains web performance in the moth-specialized spider, Cyrtarachne.

Diaz C, Tanikawa A, Miyashita T, Dhinojwala A, Blackledge TA.

J Exp Zool A Ecol Integr Physiol. 2018 Jul 10. doi: 10.1002/jez.2212. [Epub ahead of print]

PMID:
29992763
6.

Role of Hygroscopic Low Molecular Mass Compounds in Humidity Responsive Adhesion of Spider's Capture Silk.

Jain D, Amarpuri G, Fitch J, Blackledge TA, Dhinojwala A.

Biomacromolecules. 2018 Jul 9;19(7):3048-3057. doi: 10.1021/acs.biomac.8b00602. Epub 2018 Jun 27.

PMID:
29897739
7.

Hygroscopic compounds in spider aggregate glue remove interfacial water to maintain adhesion in humid conditions.

Singla S, Amarpuri G, Dhopatkar N, Blackledge TA, Dhinojwala A.

Nat Commun. 2018 May 22;9(1):1890. doi: 10.1038/s41467-018-04263-z.

8.

Tuning orb spider glycoprotein glue performance to habitat humidity.

Opell BD, Jain D, Dhinojwala A, Blackledge TA.

J Exp Biol. 2018 Mar 26;221(Pt 6). pii: jeb161539. doi: 10.1242/jeb.161539. Review.

9.

Rainbow peacock spiders inspire miniature super-iridescent optics.

Hsiung BK, Siddique RH, Stavenga DG, Otto JC, Allen MC, Liu Y, Lu YF, Deheyn DD, Shawkey MD, Blackledge TA.

Nat Commun. 2017 Dec 22;8(1):2278. doi: 10.1038/s41467-017-02451-x.

10.

Punctuated evolution of viscid silk in spider orb webs supported by mechanical behavior of wet cribellate silk.

Piorkowski D, Blackledge TA.

Naturwissenschaften. 2017 Aug;104(7-8):67. doi: 10.1007/s00114-017-1489-x. Epub 2017 Jul 27.

PMID:
28752413
11.

Spiders have rich pigmentary and structural colour palettes.

Hsiung BK, Justyn NM, Blackledge TA, Shawkey MD.

J Exp Biol. 2017 Jun 1;220(Pt 11):1975-1983. doi: 10.1242/jeb.156083.

12.

Adhesion modulation using glue droplet spreading in spider capture silk.

Amarpuri G, Zhang C, Blackledge TA, Dhinojwala A.

J R Soc Interface. 2017 May;14(130). pii: 20170228. doi: 10.1098/rsif.2017.0228.

13.

Physicochemical Property Variation in Spider Silk: Ecology, Evolution, and Synthetic Production.

Blamires SJ, Blackledge TA, Tso IM.

Annu Rev Entomol. 2017 Jan 31;62:443-460. doi: 10.1146/annurev-ento-031616-035615. Epub 2016 Dec 7. Review.

PMID:
27959639
14.

Material properties of evolutionary diverse spider silks described by variation in a single structural parameter.

Madurga R, Plaza GR, Blackledge TA, Guinea GV, Elices M, Pérez-Rigueiro J.

Sci Rep. 2016 Jan 12;6:18991. doi: 10.1038/srep18991.

15.

Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity.

Hsiung BK, Deheyn DD, Shawkey MD, Blackledge TA.

Sci Adv. 2015 Nov 27;1(10):e1500709. doi: 10.1126/sciadv.1500709. eCollection 2015 Nov.

16.

Spiders Tune Glue Viscosity to Maximize Adhesion.

Amarpuri G, Zhang C, Diaz C, Opell BD, Blackledge TA, Dhinojwala A.

ACS Nano. 2015 Nov 24;9(11):11472-8. doi: 10.1021/acsnano.5b05658. Epub 2015 Nov 2.

PMID:
26513350
17.

Spiders do have melanin after all.

Hsiung BK, Blackledge TA, Shawkey MD.

J Exp Biol. 2015 Nov;218(Pt 22):3632-5. doi: 10.1242/jeb.128801. Epub 2015 Oct 8.

18.

Persistence and variation in microstructural design during the evolution of spider silk.

Madurga R, Blackledge TA, Perea B, Plaza GR, Riekel C, Burghammer M, Elices M, Guinea G, Pérez-Rigueiro J.

Sci Rep. 2015 Oct 6;5:14820. doi: 10.1038/srep14820.

19.

Composition and Function of Spider Glues Maintained During the Evolution of Cobwebs.

Jain D, Zhang C, Cool LR, Blackledge TA, Wesdemiotis C, Miyoshi T, Dhinojwala A.

Biomacromolecules. 2015 Oct 12;16(10):3373-80. doi: 10.1021/acs.biomac.5b01040. Epub 2015 Sep 10.

PMID:
26322742
20.

Mechanical performance of spider silk is robust to nutrient-mediated changes in protein composition.

Blamires SJ, Liao CP, Chang CK, Chuang YC, Wu CL, Blackledge TA, Sheu HS, Tso IM.

Biomacromolecules. 2015 Apr 13;16(4):1218-25. doi: 10.1021/acs.biomac.5b00006. Epub 2015 Mar 25.

PMID:
25764227
21.

Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion.

Amarpuri G, Chaurasia V, Jain D, Blackledge TA, Dhinojwala A.

Sci Rep. 2015 Mar 12;5:9030. doi: 10.1038/srep09030.

22.

Direct solvation of glycoproteins by salts in spider silk glues enhances adhesion and helps to explain the evolution of modern spider orb webs.

Sahni V, Miyoshi T, Chen K, Jain D, Blamires SJ, Blackledge TA, Dhinojwala A.

Biomacromolecules. 2014 Apr 14;15(4):1225-32. doi: 10.1021/bm401800y. Epub 2014 Mar 11.

PMID:
24588057
23.

Nutrient deprivation induces property variations in spider gluey silk.

Blamires SJ, Sahni V, Dhinojwala A, Blackledge TA, Tso IM.

PLoS One. 2014 Feb 11;9(2):e88487. doi: 10.1371/journal.pone.0088487. eCollection 2014.

24.

Protein composition correlates with the mechanical properties of spider ( Argiope trifasciata ) dragline silk.

Marhabaie M, Leeper TC, Blackledge TA.

Biomacromolecules. 2014 Jan 13;15(1):20-9. doi: 10.1021/bm401110b. Epub 2013 Dec 17.

PMID:
24313814
25.

Mechanical performance of spider orb webs is tuned for high-speed prey.

Sensenig AT, Kelly SP, Lorentz KA, Lesher B, Blackledge TA.

J Exp Biol. 2013 Sep 15;216(Pt 18):3388-94. doi: 10.1242/jeb.085571.

26.

Wet webs work better: humidity, supercontraction and the performance of spider orb webs.

Boutry C, Blackledge TA.

J Exp Biol. 2013 Oct 1;216(Pt 19):3606-10. doi: 10.1242/jeb.084236. Epub 2013 Jun 20.

27.

Biomaterial evolution parallels behavioral innovation in the origin of orb-like spider webs.

Blackledge TA, Kuntner M, Marhabaie M, Leeper TC, Agnarsson I.

Sci Rep. 2012;2:833. doi: 10.1038/srep00833. Epub 2012 Nov 12.

28.

Sequential origin in the high performance properties of orb spider dragline silk.

Blackledge TA, Pérez-Rigueiro J, Plaza GR, Perea B, Navarro A, Guinea GV, Elices M.

Sci Rep. 2012;2:782. doi: 10.1038/srep00782. Epub 2012 Oct 29.

29.

Cobweb-weaving spiders produce different attachment discs for locomotion and prey capture.

Sahni V, Harris J, Blackledge TA, Dhinojwala A.

Nat Commun. 2012;3:1106. doi: 10.1038/ncomms2099.

PMID:
23033082
30.

Post-secretion processing influences spider silk performance.

Blamires SJ, Wu CL, Blackledge TA, Tso IM.

J R Soc Interface. 2012 Oct 7;9(75):2479-87. doi: 10.1098/rsif.2012.0277. Epub 2012 May 23.

31.

Spider orb webs rely on radial threads to absorb prey kinetic energy.

Sensenig AT, Lorentz KA, Kelly SP, Blackledge TA.

J R Soc Interface. 2012 Aug 7;9(73):1880-91. doi: 10.1098/rsif.2011.0851. Epub 2012 Mar 19.

32.

Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets.

Pekár S, Coddington JA, Blackledge TA.

Evolution. 2012 Mar;66(3):776-806. doi: 10.1111/j.1558-5646.2011.01471.x. Epub 2011 Oct 31.

PMID:
22380440
33.

Changes in the adhesive properties of spider aggregate glue during the evolution of cobwebs.

Sahni V, Blackledge TA, Dhinojwala A.

Sci Rep. 2011;1:41. doi: 10.1038/srep00041. Epub 2011 Jul 21.

34.

How did the spider cross the river? Behavioral adaptations for river-bridging webs in Caerostris darwini (Araneae: Araneidae).

Gregorič M, Agnarsson I, Blackledge TA, Kuntner M.

PLoS One. 2011;6(10):e26847. doi: 10.1371/journal.pone.0026847. Epub 2011 Oct 26.

35.

Plasticity in major ampullate silk production in relation to spider phylogeny and ecology.

Boutry C, Řezáč M, Blackledge TA.

PLoS One. 2011;6(7):e22467. doi: 10.1371/journal.pone.0022467. Epub 2011 Jul 27.

36.

Damping capacity is evolutionarily conserved in the radial silk of orb-weaving spiders.

Kelly SP, Sensenig A, Lorentz KA, Blackledge TA.

Zoology (Jena). 2011 Sep;114(4):233-8. doi: 10.1016/j.zool.2011.02.001. Epub 2011 Jun 30.

PMID:
21723108
37.

High-performance spider webs: integrating biomechanics, ecology and behaviour.

Harmer AM, Blackledge TA, Madin JS, Herberstein ME.

J R Soc Interface. 2011 Apr 6;8(57):457-71. doi: 10.1098/rsif.2010.0454. Epub 2010 Oct 29. Review.

38.

Viscoelastic solids explain spider web stickiness.

Sahni V, Blackledge TA, Dhinojwala A.

Nat Commun. 2010 May 17;1:19. doi: 10.1038/ncomms1019.

PMID:
20975677
39.

Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers.

Boutry C, Blackledge TA.

J Exp Biol. 2010 Oct 15;213(Pt 20):3505-14. doi: 10.1242/jeb.046110.

40.

Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider.

Agnarsson I, Kuntner M, Blackledge TA.

PLoS One. 2010 Sep 16;5(9):e11234. doi: 10.1371/journal.pone.0011234.

41.

Do electrospun polymer fibers stick?

Shi Q, Wan KT, Wong SC, Chen P, Blackledge TA.

Langmuir. 2010 Sep 7;26(17):14188-93. doi: 10.1021/la1022328.

PMID:
20681738
42.

Behavioural and biomaterial coevolution in spider orb webs.

Sensenig A, Agnarsson I, Blackledge TA.

J Evol Biol. 2010 Sep 1;23(9):1839-56. doi: 10.1111/j.1420-9101.2010.02048.x. Epub 2010 Jul 12.

43.

Fecundity increase supports adaptive radiation hypothesis in spider web evolution.

Blackledge TA, Coddington JA, Agnarsson I.

Commun Integr Biol. 2009 Nov;2(6):459-63.

44.

Biomechanical variation of silk links spinning plasticity to spider web function.

Boutry C, Blackledge TA.

Zoology (Jena). 2009;112(6):451-60. doi: 10.1016/j.zool.2009.03.003. Epub 2009 Aug 31.

PMID:
19720511
45.

Spider silk as a novel high performance biomimetic muscle driven by humidity.

Agnarsson I, Dhinojwala A, Sahni V, Blackledge TA.

J Exp Biol. 2009 Jul;212(Pt 13):1990-4. doi: 10.1242/jeb.028282.

46.

How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk.

Blackledge TA, Boutry C, Wong SC, Baji A, Dhinojwala A, Sahni V, Agnarsson I.

J Exp Biol. 2009 Jul;212(Pt 13):1981-9. doi: 10.1242/jeb.028944.

47.

Supercontraction forces in spider dragline silk depend on hydration rate.

Agnarsson I, Boutry C, Wong SC, Baji A, Dhinojwala A, Sensenig AT, Blackledge TA.

Zoology (Jena). 2009;112(5):325-31. doi: 10.1016/j.zool.2008.11.003. Epub 2009 May 23.

PMID:
19477107
48.

Reconstructing web evolution and spider diversification in the molecular era.

Blackledge TA, Scharff N, Coddington JA, Szüts T, Wenzel JW, Hayashi CY, Agnarsson I.

Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5229-34. doi: 10.1073/pnas.0901377106. Epub 2009 Mar 16.

49.

The common house spider alters the material and mechanical properties of cobweb silk in response to different prey.

Boutry C, Blackledge TA.

J Exp Zool A Ecol Genet Physiol. 2008 Nov 1;309(9):542-52. doi: 10.1002/jez.487.

PMID:
18651614
50.

Spider silk aging: initial improvement in a high performance material followed by slow degradation.

Agnarsson I, Boutry C, Blackledge TA.

J Exp Zool A Ecol Genet Physiol. 2008 Oct 1;309(8):494-504. doi: 10.1002/jez.480.

PMID:
18626974

Supplemental Content

Loading ...
Support Center