Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 47

1.

Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces pombe and S. japonicus: quantification and characterization.

Domizio P, Liu Y, Bisson LF, Barile D.

Food Microbiol. 2017 Feb;61:136-149. doi: 10.1016/j.fm.2016.08.010. Epub 2016 Sep 10.

2.

Sugar and Glycerol Transport in Saccharomyces cerevisiae.

Bisson LF, Fan Q, Walker GA.

Adv Exp Med Biol. 2016;892:125-168. doi: 10.1007/978-3-319-25304-6_6. Review.

PMID:
26721273
3.

Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism.

Jarosz DF, Brown JCS, Walker GA, Datta MS, Ung WL, Lancaster AK, Rotem A, Chang A, Newby GA, Weitz DA, Bisson LF, Lindquist S.

Cell. 2014 Aug 28;158(5):1083-1093. doi: 10.1016/j.cell.2014.07.025.

4.

Use of non-Saccharomyces wine yeasts as novel sources of mannoproteins in wine.

Domizio P, Liu Y, Bisson LF, Barile D.

Food Microbiol. 2014 Oct;43:5-15. doi: 10.1016/j.fm.2014.04.005. Epub 2014 Apr 30.

PMID:
24929876
5.

Assessment of the Brettanomyces bruxellensis metabolome during sulphur dioxide exposure.

Vigentini I, Joseph CM, Picozzi C, Foschino R, Bisson LF.

FEMS Yeast Res. 2013 Nov;13(7):597-608. doi: 10.1111/1567-1364.12060. Epub 2013 Jul 30.

6.

MTH1 and RGT1 demonstrate combined haploinsufficiency in regulation of the hexose transporter genes in Saccharomyces cerevisiae.

Dietzel KL, Ramakrishnan V, Murphy EE, Bisson LF.

BMC Genet. 2012 Dec 12;13:107. doi: 10.1186/1471-2156-13-107.

7.

Identification of MET10-932 and characterization as an allele reducing hydrogen sulfide formation in wine strains of Saccharomyces cerevisiae.

Linderholm A, Dietzel K, Hirst M, Bisson LF.

Appl Environ Microbiol. 2010 Dec;76(23):7699-707. doi: 10.1128/AEM.01666-10. Epub 2010 Oct 1.

8.

Genetics of yeast impacting wine quality.

Bisson LF, Karpel JE.

Annu Rev Food Sci Technol. 2010;1:139-62. doi: 10.1146/annurev.food.080708.100734. Review.

PMID:
22129333
9.

The geodiamolide H, derived from Brazilian sponge Geodia corticostylifera, regulates actin cytoskeleton, migration and invasion of breast cancer cells cultured in three-dimensional environment.

Freitas VM, Rangel M, Bisson LF, Jaeger RG, Machado-Santelli GM.

J Cell Physiol. 2008 Sep;216(3):583-94. doi: 10.1002/jcp.21432.

PMID:
18330887
10.

Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae.

Linderholm AL, Findleton CL, Kumar G, Hong Y, Bisson LF.

Appl Environ Microbiol. 2008 Mar;74(5):1418-27. doi: 10.1128/AEM.01758-07. Epub 2008 Jan 11.

11.

Functional genomics of wine yeast Saccharomyces cerevisiae.

Bisson LF, Karpel JE, Ramakrishnan V, Joseph L.

Adv Food Nutr Res. 2007;53:65-121. Review.

PMID:
17900497
12.
13.

Aquaporins in Saccharomyces cerevisiae wine yeast.

Karpel JE, Bisson LF.

FEMS Microbiol Lett. 2006 Apr;257(1):117-23.

14.

On the trail of an elusive flux sensor.

Bisson LF, Kunathigan V.

Res Microbiol. 2003 Nov;154(9):603-10. Review.

PMID:
14596896
15.

Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions.

Backhus LE, DeRisi J, Bisson LF.

FEMS Yeast Res. 2001 Jul;1(2):111-25. Erratum in: FEMS Yeast Res. 2003 Oct;4(1):123.

16.

Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae.

Lee WJ, Kim MD, Ryu YW, Bisson LF, Seo JH.

Appl Microbiol Biotechnol. 2002 Oct;60(1-2):186-91. Epub 2002 Sep 6.

PMID:
12382062
17.

The present and future of the international wine industry.

Bisson LF, Waterhouse AL, Ebeler SE, Walker MA, Lapsley JT.

Nature. 2002 Aug 8;418(6898):696-9.

PMID:
12167877
18.

DDSE: downstream targets of the SNF3 signal transduction pathway.

Theodoris G, Bisson LF.

FEMS Microbiol Lett. 2001 Apr 1;197(1):73-7.

19.

MET17 and hydrogen sulfide formation in Saccharomyces cerevisiae.

Spiropoulos A, Bisson LF.

Appl Environ Microbiol. 2000 Oct;66(10):4421-6.

20.

Direct profiling of the yeast dynamics in wine fermentations.

Cocolin L, Bisson LF, Mills DA.

FEMS Microbiol Lett. 2000 Aug 1;189(1):81-7.

21.
23.

The C-terminal domain of Snf3p mediates glucose-responsive signal transduction in Saccharomyces cerevisiae.

Vagnoli P, Coons DM, Bisson LF.

FEMS Microbiol Lett. 1998 Mar 1;160(1):31-6.

25.
26.
29.
30.
31.

Yeast sugar transporters.

Bisson LF, Coons DM, Kruckeberg AL, Lewis DA.

Crit Rev Biochem Mol Biol. 1993;28(4):259-308. Review.

PMID:
8403984
32.
33.

Isolation and Characterization of Pichia heedii Mutants Defective in Xylose Uptake.

Does AL, Bisson LF.

Appl Environ Microbiol. 1990 Nov;56(11):3321-8.

34.
35.

Comparison of glucose uptake kinetics in different yeasts.

Does AL, Bisson LF.

J Bacteriol. 1989 Mar;171(3):1303-8.

36.

Characterization of Xylose Uptake in the Yeasts Pichia heedii and Pichia stipitis.

Does AL, Bisson LF.

Appl Environ Microbiol. 1989 Jan;55(1):159-64.

40.

The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae.

Bisson LF, Neigeborn L, Carlson M, Fraenkel DG.

J Bacteriol. 1987 Apr;169(4):1656-62.

41.

Expression of kinase-dependent glucose uptake in Saccharomyces cerevisiae.

Bisson LF, Fraenkel DG.

J Bacteriol. 1984 Sep;159(3):1013-7.

42.

Transport of 6-deoxyglucose in Saccharomyces cerevisiae.

Bisson LF, Fraenkel DG.

J Bacteriol. 1983 Sep;155(3):995-1000.

43.

Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae.

Bisson LF, Fraenkel DG.

Proc Natl Acad Sci U S A. 1983 Mar;80(6):1730-4.

44.
45.
47.

Supplemental Content

Loading ...
Support Center