Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 17

1.

Characterization of a lytic polysaccharide monooxygenase from Gloeophyllum trabeum shows a pH-dependent relationship between catalytic activity and hydrogen peroxide production.

Hegnar OA, Petrovic DM, Bissaro B, Alfredsen G, Várnai A, Eijsink VGH.

Appl Environ Microbiol. 2018 Dec 21. pii: AEM.02612-18. doi: 10.1128/AEM.02612-18. [Epub ahead of print]

PMID:
30578267
2.

Kinetic insights into the role of the reductant in H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase.

Kuusk S, Kont R, Kuusk P, Heering A, Sørlie M, Bissaro B, Eijsink VGH, Väljamäe P.

J Biol Chem. 2018 Dec 4. pii: jbc.RA118.006196. doi: 10.1074/jbc.RA118.006196. [Epub ahead of print]

3.

Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass.

Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH.

Microbiol Mol Biol Rev. 2018 Sep 26;82(4). pii: e00029-18. doi: 10.1128/MMBR.00029-18. Print 2018 Dec. Review.

PMID:
30257993
4.

Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase.

Kuusk S, Bissaro B, Kuusk P, Forsberg Z, Eijsink VGH, Sørlie M, Väljamäe P.

J Biol Chem. 2018 Aug 3;293(31):12284. doi: 10.1074/jbc.AAC118.004796. No abstract available.

5.

The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail.

Müller G, Chylenski P, Bissaro B, Eijsink VGH, Horn SJ.

Biotechnol Biofuels. 2018 Jul 24;11:209. doi: 10.1186/s13068-018-1199-4. eCollection 2018.

6.

Methylation of the N-terminal histidine protects a lytic polysaccharide monooxygenase from auto-oxidative inactivation.

Petrović DM, Bissaro B, Chylenski P, Skaugen M, Sørlie M, Jensen MS, Aachmann FL, Courtade G, Várnai A, Eijsink VGH.

Protein Sci. 2018 Sep;27(9):1636-1650. doi: 10.1002/pro.3451.

PMID:
29971843
7.

Multipoint Precision Binding of Substrate Protects Lytic Polysaccharide Monooxygenases from Self-Destructive Off-Pathway Processes.

Loose JSM, Arntzen MØ, Bissaro B, Ludwig R, Eijsink VGH, Vaaje-Kolstad G.

Biochemistry. 2018 Jul 17;57(28):4114-4124. doi: 10.1021/acs.biochem.8b00484. Epub 2018 Jun 29.

PMID:
29901989
8.

How a Lytic Polysaccharide Monooxygenase Binds Crystalline Chitin.

Bissaro B, Isaksen I, Vaaje-Kolstad G, Eijsink VGH, Røhr ÅK.

Biochemistry. 2018 Mar 27;57(12):1893-1906. doi: 10.1021/acs.biochem.8b00138. Epub 2018 Mar 14.

PMID:
29498832
9.

Structural determinants of bacterial lytic polysaccharide monooxygenase functionality.

Forsberg Z, Bissaro B, Gullesen J, Dalhus B, Vaaje-Kolstad G, Eijsink VGH.

J Biol Chem. 2018 Jan 26;293(4):1397-1412. doi: 10.1074/jbc.M117.817130. Epub 2017 Dec 8.

PMID:
29222333
10.

Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase.

Kuusk S, Bissaro B, Kuusk P, Forsberg Z, Eijsink VGH, Sørlie M, Väljamäe P.

J Biol Chem. 2018 Jan 12;293(2):523-531. doi: 10.1074/jbc.M117.817593. Epub 2017 Nov 14. Erratum in: J Biol Chem. 2018 Aug 3;293(31):12284.

11.

Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2.

Bissaro B, Røhr ÅK, Müller G, Chylenski P, Skaugen M, Forsberg Z, Horn SJ, Vaaje-Kolstad G, Eijsink VGH.

Nat Chem Biol. 2017 Oct;13(10):1123-1128. doi: 10.1038/nchembio.2470. Epub 2017 Aug 28.

PMID:
28846668
12.

Structural diversity of lytic polysaccharide monooxygenases.

Vaaje-Kolstad G, Forsberg Z, Loose JS, Bissaro B, Eijsink VG.

Curr Opin Struct Biol. 2017 Jun;44:67-76. doi: 10.1016/j.sbi.2016.12.012. Epub 2017 Jan 10. Review.

PMID:
28086105
13.

Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases.

Bissaro B, Monsan P, Fauré R, O'Donohue MJ.

Biochem J. 2015 Apr 1;467(1):17-35. doi: 10.1042/BJ20141412.

PMID:
25793417
14.

Enhancing the chemoenzymatic synthesis of arabinosylated xylo-oligosaccharides by GH51 α-L-arabinofuranosidase.

Arab-Jaziri F, Bissaro B, Tellier C, Dion M, Fauré R, O'Donohue MJ.

Carbohydr Res. 2015 Jan 12;401:64-72. doi: 10.1016/j.carres.2014.10.029. Epub 2014 Nov 8.

PMID:
25464083
15.

Mutation of a pH-modulating residue in a GH51 α-l-arabinofuranosidase leads to a severe reduction of the secondary hydrolysis of transfuranosylation products.

Bissaro B, Saurel O, Arab-Jaziri F, Saulnier L, Milon A, Tenkanen M, Monsan P, O'Donohue MJ, Fauré R.

Biochim Biophys Acta. 2014 Jan;1840(1):626-36. doi: 10.1016/j.bbagen.2013.10.013. Epub 2013 Oct 17.

PMID:
24140392
16.

Engineering transglycosidase activity into a GH51 α-l-arabinofuranosidase.

Arab-Jaziri F, Bissaro B, Dion M, Saurel O, Harrison D, Ferreira F, Milon A, Tellier C, Fauré R, O'Donohue MJ.

N Biotechnol. 2013 Jun 25;30(5):536-44. doi: 10.1016/j.nbt.2013.04.002. Epub 2013 Apr 27.

PMID:
23628811
17.

Functional roles of H98 and W99 and β2α2 loop dynamics in the α-l-arabinofuranosidase from Thermobacillus xylanilyticus.

Arab-Jaziri F, Bissaro B, Barbe S, Saurel O, Débat H, Dumon C, Gervais V, Milon A, André I, Fauré R, O'Donohue MJ.

FEBS J. 2012 Oct;279(19):3598-3611. doi: 10.1111/j.1742-4658.2012.08720.x. Epub 2012 Aug 31.

Supplemental Content

Loading ...
Support Center