Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 14

1.

Ultrasensitive Detection of Clostridioides difficile Toxins A and B by Use of Automated Single-Molecule Counting Technology.

Sandlund J, Bartolome A, Almazan A, Tam S, Biscocho S, Abusali S, Bishop JJ, Nolan N, Estis J, Todd J, Young S, Senchyna F, Banaei N.

J Clin Microbiol. 2018 Oct 25;56(11). pii: e00908-18. doi: 10.1128/JCM.00908-18. Print 2018 Nov.

PMID:
30158195
2.

Ultrasensitive quantification of cardiac troponin I by a Single Molecule Counting method: analytical validation and biological features.

Garcia-Osuna A, Gaze D, Grau-Agramunt M, Morris T, Telha C, Bartolome A, Bishop JJ, Monsalve L, Livingston R, Estis J, Nolan N, Sandlund J, Ordonez-Llanos J.

Clin Chim Acta. 2018 Nov;486:224-231. doi: 10.1016/j.cca.2018.08.015. Epub 2018 Aug 12.

PMID:
30110608
3.

Clinical utility of single molecule counting technology for quantification of KIM-1 in patients with heart failure and chronic kidney disease.

Miao J, Friedman E, Wu AHB, Todd JA, Estis J, Xu X, Nolan N, Bishop JJ, Lenihan DJ.

Clin Biochem. 2017 Nov;50(16-17):889-895. doi: 10.1016/j.clinbiochem.2017.06.002. Epub 2017 Jun 12.

PMID:
28614696
4.

Multiplex single molecule counting technology used to generate interleukin 4, interleukin 6, and interleukin 10 reference limits.

Gilbert M, Livingston R, Felberg J, Bishop JJ.

Anal Biochem. 2016 Jun 15;503:11-20. doi: 10.1016/j.ab.2016.03.008. Epub 2016 Mar 24.

PMID:
27019152
5.

Red blood cell velocity profiles in skeletal muscle venules at low flow rates are described by the Casson model.

Das B, Bishop JJ, Kim S, Meiselman HJ, Johnson PC, Popel AS.

Clin Hemorheol Microcirc. 2007;36(3):217-33.

PMID:
17361024
6.

Relationship between erythrocyte aggregate size and flow rate in skeletal muscle venules.

Bishop JJ, Nance PR, Popel AS, Intaglietta M, Johnson PC.

Am J Physiol Heart Circ Physiol. 2004 Jan;286(1):H113-20. Epub 2003 Sep 11.

7.

Effect of aggregation and shear rate on the dispersion of red blood cells flowing in venules.

Bishop JJ, Popel AS, Intaglietta M, Johnson PC.

Am J Physiol Heart Circ Physiol. 2002 Nov;283(5):H1985-96.

8.

Erythrocyte margination and sedimentation in skeletal muscle venules.

Bishop JJ, Nance PR, Popel AS, Intaglietta M, Johnson PC.

Am J Physiol Heart Circ Physiol. 2001 Aug;281(2):H951-8.

9.

Effects of erythrocyte aggregation and venous network geometry on red blood cell axial migration.

Bishop JJ, Popel AS, Intaglietta M, Johnson PC.

Am J Physiol Heart Circ Physiol. 2001 Aug;281(2):H939-50.

10.

Rheological effects of red blood cell aggregation in the venous network: a review of recent studies.

Bishop JJ, Popel AS, Intaglietta M, Johnson PC.

Biorheology. 2001;38(2-3):263-74. Review.

PMID:
11381180
11.

Effect of erythrocyte aggregation on velocity profiles in venules.

Bishop JJ, Nance PR, Popel AS, Intaglietta M, Johnson PC.

Am J Physiol Heart Circ Physiol. 2001 Jan;280(1):H222-36.

12.

Diameter changes in skeletal muscle venules during arterial pressure reduction.

Bishop JJ, Nance PR, Popel AS, Intaglietta M, Johnson PC.

Am J Physiol Heart Circ Physiol. 2000 Jul;279(1):H47-57.

13.

Effects of red cell aggregation on the venous microcirculation.

Johnson PC, Bishop JJ, Popel S, Intaglietta M.

Biorheology. 1999;36(5-6):457-60. No abstract available.

PMID:
10818646
14.

A High-Affinity Hemoglobin Is Expressed in the Notochord of Amphioxus, Branchiostoma californiense.

Bishop JJ, Vandergon TL, Green DB, Doeller JE, Kraus DW.

Biol Bull. 1998 Dec;195(3):255-259. doi: 10.2307/1543136.

PMID:
28297607

Supplemental Content

Loading ...
Support Center