Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 79

1.

Targeting Multidrug-Resistant Acinetobacter spp.: Sulbactam and the Diazabicyclooctenone β-Lactamase Inhibitor ETX2514 as a Novel Therapeutic Agent.

Barnes MD, Kumar V, Bethel CR, Moussa SH, O'Donnell J, Rutter JD, Good CE, Hujer KM, Hujer AM, Marshall SH, Kreiswirth BN, Richter SS, Rather PN, Jacobs MR, Papp-Wallace KM, van den Akker F, Bonomo RA.

MBio. 2019 Mar 12;10(2). pii: e00159-19. doi: 10.1128/mBio.00159-19.

2.

Beyond Piperacillin-Tazobactam: Cefepime and AAI101 as a Potent β-Lactam-β-Lactamase Inhibitor Combination.

Papp-Wallace KM, Bethel CR, Caillon J, Barnes MD, Potel G, Bajaksouzian S, Rutter JD, Reghal A, Shapiro S, Taracila MA, Jacobs MR, Bonomo RA, Jacqueline C.

Antimicrob Agents Chemother. 2019 Apr 25;63(5). pii: e00105-19. doi: 10.1128/AAC.00105-19. Print 2019 May.

PMID:
30858223
3.

Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in Pseudomonas aeruginosa.

Barnes MD, Taracila MA, Rutter JD, Bethel CR, Galdadas I, Hujer AM, Caselli E, Prati F, Dekker JP, Papp-Wallace KM, Haider S, Bonomo RA.

MBio. 2018 Dec 11;9(6). pii: e02085-18. doi: 10.1128/mBio.02085-18.

4.

The Reaction Mechanism of Metallo-β-Lactamases Is Tuned by the Conformation of an Active-Site Mobile Loop.

Palacios AR, Mojica MF, Giannini E, Taracila MA, Bethel CR, Alzari PM, Otero LH, Klinke S, Llarrull LI, Bonomo RA, Vila AJ.

Antimicrob Agents Chemother. 2018 Dec 21;63(1). pii: e01754-18. doi: 10.1128/AAC.01754-18. Print 2019 Jan.

5.

Correction to Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo-β-lactamase-1.

Chen AY, Thomas PW, Stewart AC, Bergstrom A, Cheng Z, Miller C, Bethel CR, Marshall SH, Credille CV, Riley CL, Page RC, Bonomo RA, Crowder MW, Tierney DL, Fast W, Cohen SM.

J Med Chem. 2018 Jul 26;61(14):6400. doi: 10.1021/acs.jmedchem.8b01057. Epub 2018 Jul 18. No abstract available.

PMID:
30019584
6.

Evolution of New Delhi metallo-β-lactamase (NDM) in the clinic: Effects of NDM mutations on stability, zinc affinity, and mono-zinc activity.

Cheng Z, Thomas PW, Ju L, Bergstrom A, Mason K, Clayton D, Miller C, Bethel CR, VanPelt J, Tierney DL, Page RC, Bonomo RA, Fast W, Crowder MW.

J Biol Chem. 2018 Aug 10;293(32):12606-12618. doi: 10.1074/jbc.RA118.003835. Epub 2018 Jun 16.

7.

Strategic Approaches to Overcome Resistance against Gram-Negative Pathogens Using β-Lactamase Inhibitors and β-Lactam Enhancers: Activity of Three Novel Diazabicyclooctanes WCK 5153, Zidebactam (WCK 5107), and WCK 4234.

Papp-Wallace KM, Nguyen NQ, Jacobs MR, Bethel CR, Barnes MD, Kumar V, Bajaksouzian S, Rudin SD, Rather PN, Bhavsar S, Ravikumar T, Deshpande PK, Patil V, Yeole R, Bhagwat SS, Patel MV, van den Akker F, Bonomo RA.

J Med Chem. 2018 May 10;61(9):4067-4086. doi: 10.1021/acs.jmedchem.8b00091. Epub 2018 Apr 20.

8.

Relebactam Is a Potent Inhibitor of the KPC-2 β-Lactamase and Restores Imipenem Susceptibility in KPC-Producing Enterobacteriaceae.

Papp-Wallace KM, Barnes MD, Alsop J, Taracila MA, Bethel CR, Becka SA, van Duin D, Kreiswirth BN, Kaye KS, Bonomo RA.

Antimicrob Agents Chemother. 2018 May 25;62(6). pii: e00174-18. doi: 10.1128/AAC.00174-18. Print 2018 Jun.

9.

Inactivation of the Pseudomonas-Derived Cephalosporinase-3 (PDC-3) by Relebactam.

Barnes MD, Bethel CR, Alsop J, Becka SA, Rutter JD, Papp-Wallace KM, Bonomo RA.

Antimicrob Agents Chemother. 2018 Apr 26;62(5). pii: e02406-17. doi: 10.1128/AAC.02406-17. Print 2018 May.

10.

Probing the Mechanism of Inactivation of the FOX-4 Cephamycinase by Avibactam.

Nukaga M, Papp-Wallace KM, Hoshino T, Lefurgy ST, Bethel CR, Barnes MD, Zeiser ET, Johnson JK, Bonomo RA.

Antimicrob Agents Chemother. 2018 Apr 26;62(5). pii: e02371-17. doi: 10.1128/AAC.02371-17. Print 2018 May.

11.

Clinical Evolution of New Delhi Metallo-β-Lactamase (NDM) Optimizes Resistance under Zn(II) Deprivation.

Bahr G, Vitor-Horen L, Bethel CR, Bonomo RA, González LJ, Vila AJ.

Antimicrob Agents Chemother. 2017 Dec 21;62(1). pii: e01849-17. doi: 10.1128/AAC.01849-17. Print 2018 Jan.

12.

Clinical Variants of New Delhi Metallo-β-Lactamase Are Evolving To Overcome Zinc Scarcity.

Stewart AC, Bethel CR, VanPelt J, Bergstrom A, Cheng Z, Miller CG, Williams C, Poth R, Morris M, Lahey O, Nix JC, Tierney DL, Page RC, Crowder MW, Bonomo RA, Fast W.

ACS Infect Dis. 2017 Dec 8;3(12):927-940. doi: 10.1021/acsinfecdis.7b00128. Epub 2017 Oct 11.

13.

Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo-β-lactamase-1.

Chen AY, Thomas PW, Stewart AC, Bergstrom A, Cheng Z, Miller C, Bethel CR, Marshall SH, Credille CV, Riley CL, Page RC, Bonomo RA, Crowder MW, Tierney DL, Fast W, Cohen SM.

J Med Chem. 2017 Sep 14;60(17):7267-7283. doi: 10.1021/acs.jmedchem.7b00407. Epub 2017 Aug 30. Erratum in: J Med Chem. 2018 Jul 26;61(14):6400.

14.

Activity of the β-Lactamase Inhibitor LN-1-255 against Carbapenem-Hydrolyzing Class D β-Lactamases from Acinetobacter baumannii.

Vázquez-Ucha JC, Maneiro M, Martínez-Guitián M, Buynak J, Bethel CR, Bonomo RA, Bou G, Poza M, González-Bello C, Beceiro A.

Antimicrob Agents Chemother. 2017 Oct 24;61(11). pii: e01172-17. doi: 10.1128/AAC.01172-17. Print 2017 Nov.

15.

Exploring the Landscape of Diazabicyclooctane (DBO) Inhibition: Avibactam Inactivation of PER-2 β-Lactamase.

Ruggiero M, Papp-Wallace KM, Taracila MA, Mojica MF, Bethel CR, Rudin SD, Zeiser ET, Gutkind G, Bonomo RA, Power P.

Antimicrob Agents Chemother. 2017 May 24;61(6). pii: e02476-16. doi: 10.1128/AAC.02476-16. Print 2017 Jun.

16.

LN-1-255, a penicillanic acid sulfone able to inhibit the class D carbapenemase OXA-48.

Vallejo JA, Martínez-Guitián M, Vázquez-Ucha JC, González-Bello C, Poza M, Buynak JD, Bethel CR, Bonomo RA, Bou G, Beceiro A.

J Antimicrob Chemother. 2016 Aug;71(8):2171-80. doi: 10.1093/jac/dkw105. Epub 2016 Apr 28.

17.

Boronic Acid Transition State Inhibitors Active against KPC and Other Class A β-Lactamases: Structure-Activity Relationships as a Guide to Inhibitor Design.

Rojas LJ, Taracila MA, Papp-Wallace KM, Bethel CR, Caselli E, Romagnoli C, Winkler ML, Spellberg B, Prati F, Bonomo RA.

Antimicrob Agents Chemother. 2016 Jan 4;60(3):1751-9. doi: 10.1128/AAC.02641-15.

18.

"Mind the Gap": Raman Evidence for Rapid Inactivation of CTX-M-9 β-Lactamase Using Mechanism-Based Inhibitors that Bridge the Active Site.

Heidari-Torkabadi H, Bethel CR, Ding Z, Pusztai-Carey M, Bonnet R, Bonomo RA, Carey PR.

J Am Chem Soc. 2015 Oct 14;137(40):12760-3. doi: 10.1021/jacs.5b10007. Epub 2015 Oct 5.

PMID:
26421661
19.

In Vivo Evolution of CMY-2 to CMY-33 β-Lactamase in Escherichia coli Sequence Type 131: Characterization of an Acquired Extended-Spectrum AmpC Conferring Resistance to Cefepime.

Pires J, Taracila M, Bethel CR, Doi Y, Kasraian S, Tinguely R, Sendi P, Bonomo RA, Endimiani A.

Antimicrob Agents Chemother. 2015 Dec;59(12):7483-8. doi: 10.1128/AAC.01804-15. Epub 2015 Sep 21.

20.

Elucidating the Role of Residue 67 in IMP-Type Metallo-β-Lactamase Evolution.

LaCuran AE, Pegg KM, Liu EM, Bethel CR, Ai N, Welsh WJ, Bonomo RA, Oelschlaeger P.

Antimicrob Agents Chemother. 2015 Dec;59(12):7299-307. doi: 10.1128/AAC.01651-15. Epub 2015 Sep 14.

21.

Inhibiting the β-Lactamase of Mycobacterium tuberculosis (Mtb) with Novel Boronic Acid Transition-State Inhibitors (BATSIs).

Kurz SG, Hazra S, Bethel CR, Romagnoli C, Caselli E, Prati F, Blanchard JS, Bonomo RA.

ACS Infect Dis. 2015 Jun 12;1(6):234-42. doi: 10.1021/acsinfecdis.5b00003. Epub 2015 Apr 15.

PMID:
27622739
22.

Exploring the Role of Residue 228 in Substrate and Inhibitor Recognition by VIM Metallo-β-lactamases.

Mojica MF, Mahler SG, Bethel CR, Taracila MA, Kosmopoulou M, Papp-Wallace KM, Llarrull LI, Wilson BM, Marshall SH, Wallace CJ, Villegas MV, Harris ME, Vila AJ, Spencer J, Bonomo RA.

Biochemistry. 2015 May 26;54(20):3183-96. doi: 10.1021/acs.biochem.5b00106. Epub 2015 May 12.

23.

Detecting a quasi-stable imine species on the reaction pathway of SHV-1 β-lactamase and 6β-(hydroxymethyl)penicillanic acid sulfone.

Che T, Rodkey EA, Bethel CR, Shanmugam S, Ding Z, Pusztai-Carey M, Nottingham M, Chai W, Buynak JD, Bonomo RA, van den Akker F, Carey PR.

Biochemistry. 2015 Jan 27;54(3):734-43. doi: 10.1021/bi501197t. Epub 2015 Jan 8.

24.

Understanding the determinants of substrate specificity in IMP family metallo-β-lactamases: the importance of residue 262.

Pegg KM, Liu EM, George AC, LaCuran AE, Bethel CR, Bonomo RA, Oelschlaeger P.

Protein Sci. 2014 Oct;23(10):1451-60. doi: 10.1002/pro.2530. Epub 2014 Aug 20.

25.

Following drug uptake and reactions inside Escherichia coli cells by Raman microspectroscopy.

Heidari Torkabadi H, Bethel CR, Papp-Wallace KM, de Boer PA, Bonomo RA, Carey PR.

Biochemistry. 2014 Jul 1;53(25):4113-21. doi: 10.1021/bi500529c. Epub 2014 Jun 18.

26.

Penam sulfones and β-lactamase inhibition: SA2-13 and the importance of the C2 side chain length and composition.

Rodkey EA, Winkler ML, Bethel CR, Pagadala SR, Buynak JD, Bonomo RA, van den Akker F.

PLoS One. 2014 Jan 16;9(1):e85892. doi: 10.1371/journal.pone.0085892. eCollection 2014.

27.

The different inhibition mechanisms of OXA-1 and OXA-24 β-lactamases are determined by the stability of active site carboxylated lysine.

Che T, Bethel CR, Pusztai-Carey M, Bonomo RA, Carey PR.

J Biol Chem. 2014 Feb 28;289(9):6152-64. doi: 10.1074/jbc.M113.533562. Epub 2014 Jan 17.

28.

A kinetic analysis of the inhibition of FOX-4 β-lactamase, a plasmid-mediated AmpC cephalosporinase, by monocyclic β-lactams and carbapenems.

Papp-Wallace KM, Mallo S, Bethel CR, Taracila MA, Hujer AM, Fernández A, Gatta JA, Smith KM, Xu Y, Page MG, Desarbre E, Bou G, Bonomo RA.

J Antimicrob Chemother. 2014 Mar;69(3):682-90. doi: 10.1093/jac/dkt434. Epub 2013 Nov 13.

29.

β-Lactamase inhibition by 7-alkylidenecephalosporin sulfones: allylic transposition and formation of an unprecedented stabilized acyl-enzyme.

Rodkey EA, McLeod DC, Bethel CR, Smith KM, Xu Y, Chai W, Che T, Carey PR, Bonomo RA, van den Akker F, Buynak JD.

J Am Chem Soc. 2013 Dec 11;135(49):18358-69. doi: 10.1021/ja403598g. Epub 2013 Dec 3.

30.

Can inhibitor-resistant substitutions in the Mycobacterium tuberculosis β-Lactamase BlaC lead to clavulanate resistance?: a biochemical rationale for the use of β-lactam-β-lactamase inhibitor combinations.

Kurz SG, Wolff KA, Hazra S, Bethel CR, Hujer AM, Smith KM, Xu Y, Tremblay LW, Blanchard JS, Nguyen L, Bonomo RA.

Antimicrob Agents Chemother. 2013 Dec;57(12):6085-96. doi: 10.1128/AAC.01253-13. Epub 2013 Sep 23.

31.

Design and exploration of novel boronic acid inhibitors reveals important interactions with a clavulanic acid-resistant sulfhydryl-variable (SHV) β-lactamase.

Winkler ML, Rodkey EA, Taracila MA, Drawz SM, Bethel CR, Papp-Wallace KM, Smith KM, Xu Y, Dwulit-Smith JR, Romagnoli C, Caselli E, Prati F, van den Akker F, Bonomo RA.

J Med Chem. 2013 Feb 14;56(3):1084-97. doi: 10.1021/jm301490d. Epub 2013 Feb 4.

32.

Structures of SHV-1 β-lactamase with penem and penam sulfone inhibitors that form cyclic intermediates stabilized by carbonyl conjugation.

Ke W, Pattanaik P, Bethel CR, Sheri A, Buynak JD, Bonomo RA, van den Akker F.

PLoS One. 2012;7(11):e49035. doi: 10.1371/journal.pone.0049035. Epub 2012 Nov 8.

33.

Crystal structure of a preacylation complex of the β-lactamase inhibitor sulbactam bound to a sulfenamide bond-containing thiol-β-lactamase.

Rodkey EA, Drawz SM, Sampson JM, Bethel CR, Bonomo RA, van den Akker F.

J Am Chem Soc. 2012 Oct 10;134(40):16798-804. doi: 10.1021/ja3073676. Epub 2012 Sep 26.

34.

Carboxylation and decarboxylation of active site Lys 84 controls the activity of OXA-24 β-lactamase of Acinetobacter baumannii: Raman crystallographic and solution evidence.

Che T, Bonomo RA, Shanmugam S, Bethel CR, Pusztai-Carey M, Buynak JD, Carey PR.

J Am Chem Soc. 2012 Jul 11;134(27):11206-15. doi: 10.1021/ja303168n. Epub 2012 Jun 28.

35.

Crystal structures of KPC-2 β-lactamase in complex with 3-nitrophenyl boronic acid and the penam sulfone PSR-3-226.

Ke W, Bethel CR, Papp-Wallace KM, Pagadala SR, Nottingham M, Fernandez D, Buynak JD, Bonomo RA, van den Akker F.

Antimicrob Agents Chemother. 2012 May;56(5):2713-8. doi: 10.1128/AAC.06099-11. Epub 2012 Feb 13.

36.

Inactivation of a class A and a class C β-lactamase by 6β-(hydroxymethyl)penicillanic acid sulfone.

Papp-Wallace KM, Bethel CR, Gootz TD, Shang W, Stroh J, Lau W, McLeod D, Price L, Marfat A, Distler A, Drawz SM, Chen H, Harry E, Nottingham M, Carey PR, Buynak JD, Bonomo RA.

Biochem Pharmacol. 2012 Feb 15;83(4):462-71. doi: 10.1016/j.bcp.2011.11.015. Epub 2011 Dec 2.

37.

Exploring the inhibition of CTX-M-9 by beta-lactamase inhibitors and carbapenems.

Bethel CR, Taracila M, Shyr T, Thomson JM, Distler AM, Hujer KM, Hujer AM, Endimiani A, Papp-Wallace K, Bonnet R, Bonomo RA.

Antimicrob Agents Chemother. 2011 Jul;55(7):3465-75. doi: 10.1128/AAC.00089-11. Epub 2011 May 9.

38.

Ligand-dependent disorder of the Omega loop observed in extended-spectrum SHV-type beta-lactamase.

Sampson JM, Ke W, Bethel CR, Pagadala SR, Nottingham MD, Bonomo RA, Buynak JD, van den Akker F.

Antimicrob Agents Chemother. 2011 May;55(5):2303-9. doi: 10.1128/AAC.01360-10. Epub 2011 Feb 28.

39.

Modifications of the C6-substituent of penicillin sulfones with the goal of improving inhibitor recognition and efficacy.

Nottingham M, Bethel CR, Pagadala SR, Harry E, Pinto A, Lemons ZA, Drawz SM, Akker Fv, Carey PR, Bonomo RA, Buynak JD.

Bioorg Med Chem Lett. 2011 Jan 1;21(1):387-93. doi: 10.1016/j.bmcl.2010.10.134. Epub 2010 Nov 5.

40.

Novel insights into the mode of inhibition of class A SHV-1 beta-lactamases revealed by boronic acid transition state inhibitors.

Ke W, Sampson JM, Ori C, Prati F, Drawz SM, Bethel CR, Bonomo RA, van den Akker F.

Antimicrob Agents Chemother. 2011 Jan;55(1):174-83. doi: 10.1128/AAC.00930-10. Epub 2010 Nov 1.

41.

Evaluation of updated interpretative criteria for categorizing Klebsiella pneumoniae with reduced carbapenem susceptibility.

Endimiani A, Perez F, Bajaksouzian S, Windau AR, Good CE, Choudhary Y, Hujer AM, Bethel CR, Bonomo RA, Jacobs MR.

J Clin Microbiol. 2010 Dec;48(12):4417-25. doi: 10.1128/JCM.02458-09. Epub 2010 Sep 29.

42.

Design, synthesis, and crystal structures of 6-alkylidene-2'-substituted penicillanic acid sulfones as potent inhibitors of Acinetobacter baumannii OXA-24 carbapenemase.

Bou G, Santillana E, Sheri A, Beceiro A, Sampson JM, Kalp M, Bethel CR, Distler AM, Drawz SM, Pagadala SR, van den Akker F, Bonomo RA, Romero A, Buynak JD.

J Am Chem Soc. 2010 Sep 29;132(38):13320-31. doi: 10.1021/ja104092z.

43.

Elucidating the role of Trp105 in the KPC-2 β-lactamase.

Papp-Wallace KM, Taracila M, Wallace CJ, Hujer KM, Bethel CR, Hornick JM, Bonomo RA.

Protein Sci. 2010 Sep;19(9):1714-27. doi: 10.1002/pro.454.

44.

Intramuscularly administered peptide A3-APO is effective against carbapenem-resistant Acinetobacter baumannii in mouse models of systemic infections.

Ostorhazi E, Rozgonyi F, Szabo D, Binas A, Cassone M, Wade JD, Nolte O, Bethel CR, Bonomo RA, Otvos L Jr.

Biopolymers. 2011;96(2):126-9. doi: 10.1002/bip.21443.

45.

Penicillin sulfone inhibitors of class D beta-lactamases.

Drawz SM, Bethel CR, Doppalapudi VR, Sheri A, Pagadala SR, Hujer AM, Skalweit MJ, Anderson VE, Chen SG, Buynak JD, Bonomo RA.

Antimicrob Agents Chemother. 2010 Apr;54(4):1414-24. doi: 10.1128/AAC.00743-09. Epub 2010 Jan 19.

46.

Inhibitor resistance in the KPC-2 beta-lactamase, a preeminent property of this class A beta-lactamase.

Papp-Wallace KM, Bethel CR, Distler AM, Kasuboski C, Taracila M, Bonomo RA.

Antimicrob Agents Chemother. 2010 Feb;54(2):890-7. doi: 10.1128/AAC.00693-09. Epub 2009 Dec 14.

47.

Enhancing resistance to cephalosporins in class C beta-lactamases: impact of Gly214Glu in CMY-2.

Endimiani A, Doi Y, Bethel CR, Taracila M, Adams-Haduch JM, O'Keefe A, Hujer AM, Paterson DL, Skalweit MJ, Page MG, Drawz SM, Bonomo RA.

Biochemistry. 2010 Feb 9;49(5):1014-23. doi: 10.1021/bi9015549.

48.

Inhibition of the class C beta-lactamase from Acinetobacter spp.: insights into effective inhibitor design.

Drawz SM, Babic M, Bethel CR, Taracila M, Distler AM, Ori C, Caselli E, Prati F, Bonomo RA.

Biochemistry. 2010 Jan 19;49(2):329-40. doi: 10.1021/bi9015988.

49.

Why the extended-spectrum beta-lactamases SHV-2 and SHV-5 are "hypersusceptible" to mechanism-based inhibitors.

Kalp M, Bethel CR, Bonomo RA, Carey PR.

Biochemistry. 2009 Oct 20;48(41):9912-20. doi: 10.1021/bi9012098.

50.

Mutation of the active site carboxy-lysine (K70) of OXA-1 beta-lactamase results in a deacylation-deficient enzyme.

Schneider KD, Bethel CR, Distler AM, Hujer AM, Bonomo RA, Leonard DA.

Biochemistry. 2009 Jul 7;48(26):6136-45. doi: 10.1021/bi900448u.

Supplemental Content

Loading ...
Support Center