Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 30

1.

Vigour of self-paced reaching movement: cost of time and individual traits.

Berret B, Castanier C, Bastide S, Deroche T.

Sci Rep. 2018 Jul 13;8(1):10655. doi: 10.1038/s41598-018-28979-6.

2.

Deciphering the functional role of spatial and temporal muscle synergies in whole-body movements.

Delis I, Hilt PM, Pozzo T, Panzeri S, Berret B.

Sci Rep. 2018 May 30;8(1):8391. doi: 10.1038/s41598-018-26780-z.

3.

Space-by-Time Modular Decomposition Effectively Describes Whole-Body Muscle Activity During Upright Reaching in Various Directions.

Hilt PM, Delis I, Pozzo T, Berret B.

Front Comput Neurosci. 2018 Apr 3;12:20. doi: 10.3389/fncom.2018.00020. eCollection 2018.

4.

Analysis of human-exoskeleton interactions: an elbow flexion/extension case study.

Bastide S, Vignais N, Geffard F, Berret B.

Comput Methods Biomech Biomed Engin. 2017 Oct;20(sup1):9-10. doi: 10.1080/10255842.2017.1382835. No abstract available.

PMID:
29088623
5.

[Optimal adaptation of human movement to the gravity field].

Gaveau J, Berret B, Papaxanthis C.

Med Sci (Paris). 2017 Aug-Sep;33(8-9):704-706. doi: 10.1051/medsci/20173308006. Epub 2017 Sep 18. French. No abstract available.

PMID:
28945551
6.

Adaptive use of interaction torque during arm reaching movement from the optimal control viewpoint.

Vu VH, Isableu B, Berret B.

Sci Rep. 2016 Dec 12;6:38845. doi: 10.1038/srep38845.

7.

Direction-dependent arm kinematics reveal optimal integration of gravity cues.

Gaveau J, Berret B, Angelaki DE, Papaxanthis C.

Elife. 2016 Nov 2;5. pii: e16394. doi: 10.7554/eLife.16394.

8.

On the nature of motor planning variables during arm pointing movement: Compositeness and speed dependence.

Vu VH, Isableu B, Berret B.

Neuroscience. 2016 Jul 22;328:127-46. doi: 10.1016/j.neuroscience.2016.04.027. Epub 2016 Apr 27.

PMID:
27132233
9.

Evidence for subjective values guiding posture and movement coordination in a free-endpoint whole-body reaching task.

Hilt PM, Berret B, Papaxanthis C, Stapley PJ, Pozzo T.

Sci Rep. 2016 Apr 7;6:23868. doi: 10.1038/srep23868.

10.

Why Don't We Move Slower? The Value of Time in the Neural Control of Action.

Berret B, Jean F.

J Neurosci. 2016 Jan 27;36(4):1056-70. doi: 10.1523/JNEUROSCI.1921-15.2016.

11.

Task-discriminative space-by-time factorization of muscle activity.

Delis I, Panzeri S, Pozzo T, Berret B.

Front Hum Neurosci. 2015 Jul 10;9:399. doi: 10.3389/fnhum.2015.00399. eCollection 2015.

12.

Reach endpoint formation during the visuomotor planning of free arm pointing.

Berret B, Bisio A, Jacono M, Pozzo T.

Eur J Neurosci. 2014 Nov;40(10):3491-503. doi: 10.1111/ejn.12721. Epub 2014 Sep 11.

PMID:
25209101
13.

Energy-related optimal control accounts for gravitational load: comparing shoulder, elbow, and wrist rotations.

Gaveau J, Berret B, Demougeot L, Fadiga L, Pozzo T, Papaxanthis C.

J Neurophysiol. 2014 Jan;111(1):4-16. doi: 10.1152/jn.01029.2012. Epub 2013 Oct 16.

14.

A unifying model of concurrent spatial and temporal modularity in muscle activity.

Delis I, Panzeri S, Pozzo T, Berret B.

J Neurophysiol. 2014 Feb;111(3):675-93. doi: 10.1152/jn.00245.2013. Epub 2013 Oct 2.

15.

A methodology for assessing the effect of correlations among muscle synergy activations on task-discriminating information.

Delis I, Berret B, Pozzo T, Panzeri S.

Front Comput Neurosci. 2013 May 13;7:54. doi: 10.3389/fncom.2013.00054. eCollection 2013.

16.

Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives.

Alessandro C, Delis I, Nori F, Panzeri S, Berret B.

Front Comput Neurosci. 2013 Apr 19;7:43. doi: 10.3389/fncom.2013.00043. eCollection 2013.

17.

Quantitative evaluation of muscle synergy models: a single-trial task decoding approach.

Delis I, Berret B, Pozzo T, Panzeri S.

Front Comput Neurosci. 2013 Feb 26;7:8. doi: 10.3389/fncom.2013.00008. eCollection 2013.

18.

Investigating reduction of dimensionality during single-joint elbow movements: a case study on muscle synergies.

Chiovetto E, Berret B, Delis I, Panzeri S, Pozzo T.

Front Comput Neurosci. 2013 Feb 28;7:11. doi: 10.3389/fncom.2013.00011. eCollection 2013.

19.

Visual gravity influences arm movement planning.

Sciutti A, Demougeot L, Berret B, Toma S, Sandini G, Papaxanthis C, Pozzo T.

J Neurophysiol. 2012 Jun;107(12):3433-45. doi: 10.1152/jn.00420.2011. Epub 2012 Mar 21.

20.

Evidence for composite cost functions in arm movement planning: an inverse optimal control approach.

Berret B, Chiovetto E, Nori F, Pozzo T.

PLoS Comput Biol. 2011 Oct;7(10):e1002183. doi: 10.1371/journal.pcbi.1002183. Epub 2011 Oct 13.

21.

An ensemble analysis of electromyographic activity during whole body pointing with the use of support vector machines.

Tolambiya A, Thomas E, Chiovetto E, Berret B, Pozzo T.

PLoS One. 2011;6(7):e20732. doi: 10.1371/journal.pone.0020732. Epub 2011 Jul 26.

22.

Manifold reaching paradigm: how do we handle target redundancy?

Berret B, Chiovetto E, Nori F, Pozzo T.

J Neurophysiol. 2011 Oct;106(4):2086-102. doi: 10.1152/jn.01063.2010. Epub 2011 Jul 6.

23.

Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning.

Gaveau J, Paizis C, Berret B, Pozzo T, Papaxanthis C.

J Neurophysiol. 2011 Aug;106(2):620-9. doi: 10.1152/jn.00081.2011. Epub 2011 May 11.

24.

Tri-dimensional and triphasic muscle organization of whole-body pointing movements.

Chiovetto E, Berret B, Pozzo T.

Neuroscience. 2010 Nov 10;170(4):1223-38. doi: 10.1016/j.neuroscience.2010.07.006. Epub 2010 Jul 13.

PMID:
20633612
25.

On the origins of modularity in motor control.

Delis I, Chiovetto E, Berret B.

J Neurosci. 2010 Jun 2;30(22):7451-2. doi: 10.1523/JNEUROSCI.1562-10.2010. No abstract available.

26.

Pointing to double-step visual stimuli from a standing position: very short latency (express) corrections are observed in upper and lower limbs and may not require cortical involvement.

Fautrelle L, Prablanc C, Berret B, Ballay Y, Bonnetblanc F.

Neuroscience. 2010 Aug 25;169(2):697-705. doi: 10.1016/j.neuroscience.2010.05.014. Epub 2010 May 20.

PMID:
20493241
27.

Equilibrium constraints do not affect the timing of muscular synergies during the initiation of a whole body reaching movement.

Fautrelle L, Berret B, Chiovetto E, Pozzo T, Bonnetblanc F.

Exp Brain Res. 2010 May;203(1):147-58. doi: 10.1007/s00221-010-2219-1. Epub 2010 Mar 26.

PMID:
20339837
28.

Modular control of pointing beyond arm's length.

Berret B, Bonnetblanc F, Papaxanthis C, Pozzo T.

J Neurosci. 2009 Jan 7;29(1):191-205. doi: 10.1523/JNEUROSCI.3426-08.2009.

29.

Reaching beyond arm length in normal aging: adaptation of hand trajectory and dynamic equilibrium.

Paizis C, Papaxanthis C, Berret B, Pozzo T.

Behav Neurosci. 2008 Dec;122(6):1361-70. doi: 10.1037/a0013280.

PMID:
19045955
30.

The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements.

Berret B, Darlot C, Jean F, Pozzo T, Papaxanthis C, Gauthier JP.

PLoS Comput Biol. 2008 Oct;4(10):e1000194. doi: 10.1371/journal.pcbi.1000194. Epub 2008 Oct 24.

Supplemental Content

Loading ...
Support Center