Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 94

1.

Reductions in ATPase activity, actin sliding velocity and myofibril stability yield muscle dysfunction in Drosophila models of myosin-based Freeman Sheldon syndrome.

Rao DS, Kronert WA, Guo Y, Hsu KH, Sarsoza F, Bernstein SI.

Mol Biol Cell. 2018 Oct 31:mbcE18080526. doi: 10.1091/mbc.E18-08-0526. [Epub ahead of print]

PMID:
30379605
2.

Suppression of myopathic lamin mutations by muscle-specific activation of AMPK and modulation of downstream signaling.

Chandran S, Suggs JA, Wang BJ, Han A, Bhide S, Cryderman DE, Moore SA, Bernstein SI, Wallrath LL, Melkani GC.

Hum Mol Genet. 2018 Sep 18. doi: 10.1093/hmg/ddy332. [Epub ahead of print]

PMID:
30239736
3.

Prolonged cross-bridge binding triggers muscle dysfunction in a Drosophila model of myosin-based hypertrophic cardiomyopathy.

Kronert WA, Bell KM, Viswanathan MC, Melkani GC, Trujillo AS, Huang A, Melkani A, Cammarato A, Swank DM, Bernstein SI.

Elife. 2018 Aug 13;7. pii: e38064. doi: 10.7554/eLife.38064.

4.

Interacting-heads motif has been conserved as a mechanism of myosin II inhibition since before the origin of animals.

Lee KH, Sulbarán G, Yang S, Mun JY, Alamo L, Pinto A, Sato O, Ikebe M, Liu X, Korn ED, Sarsoza F, Bernstein SI, Padrón R, Craig R.

Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E1991-E2000. doi: 10.1073/pnas.1715247115. Epub 2018 Feb 14.

5.

Myosin storage myopathy mutations yield defective myosin filament assembly in vitro and disrupted myofibrillar structure and function in vivo.

Viswanathan MC, Tham RC, Kronert WA, Sarsoza F, Trujillo AS, Cammarato A, Bernstein SI.

Hum Mol Genet. 2017 Dec 15;26(24):4799-4813. doi: 10.1093/hmg/ddx359.

6.

TRiC/CCT chaperonins are essential for maintaining myofibril organization, cardiac physiological rhythm, and lifespan.

Melkani GC, Bhide S, Han A, Vyas J, Livelo C, Bodmer R, Bernstein SI.

FEBS Lett. 2017 Nov;591(21):3447-3458. doi: 10.1002/1873-3468.12860. Epub 2017 Oct 10.

7.

A Drosophila model of dominant inclusion body myopathy type 3 shows diminished myosin kinetics that reduce muscle power and yield myofibrillar defects.

Suggs JA, Melkani GC, Glasheen BM, Detor MM, Melkani A, Marsan NP, Swank DM, Bernstein SI.

Dis Model Mech. 2017 Jun 1;10(6):761-771. doi: 10.1242/dmm.028050. Epub 2017 Mar 3.

8.

Expression patterns of cardiac aging in Drosophila.

Cannon L, Zambon AC, Cammarato A, Zhang Z, Vogler G, Munoz M, Taylor E, Cartry J, Bernstein SI, Melov S, Bodmer R.

Aging Cell. 2017 Feb;16(1):82-92. doi: 10.1111/acel.12559.

9.

A Restrictive Cardiomyopathy Mutation in an Invariant Proline at the Myosin Head/Rod Junction Enhances Head Flexibility and Function, Yielding Muscle Defects in Drosophila.

Achal M, Trujillo AS, Melkani GC, Farman GP, Ocorr K, Viswanathan MC, Kaushik G, Newhard CS, Glasheen BM, Melkani A, Suggs JA, Moore JR, Swank DM, Bodmer R, Cammarato A, Bernstein SI.

J Mol Biol. 2016 Jun 5;428(11):2446-2461. doi: 10.1016/j.jmb.2016.04.021. Epub 2016 Apr 20.

10.

Profilin modulates sarcomeric organization and mediates cardiomyocyte hypertrophy.

Kooij V, Viswanathan MC, Lee DI, Rainer PP, Schmidt W, Kronert WA, Harding SE, Kass DA, Bernstein SI, Van Eyk JE, Cammarato A.

Cardiovasc Res. 2016 May 15;110(2):238-48. doi: 10.1093/cvr/cvw050. Epub 2016 Mar 7.

11.

The Relay/Converter Interface Influences Hydrolysis of ATP by Skeletal Muscle Myosin II.

Bloemink MJ, Melkani GC, Bernstein SI, Geeves MA.

J Biol Chem. 2016 Jan 22;291(4):1763-73. doi: 10.1074/jbc.M115.688002. Epub 2015 Nov 19.

12.

A Failure to Communicate: MYOSIN RESIDUES INVOLVED IN HYPERTROPHIC CARDIOMYOPATHY AFFECT INTER-DOMAIN INTERACTION.

Kronert WA, Melkani GC, Melkani A, Bernstein SI.

J Biol Chem. 2015 Dec 4;290(49):29270-80. doi: 10.1074/jbc.M115.681874. Epub 2015 Oct 7.

13.

Vinculin network-mediated cytoskeletal remodeling regulates contractile function in the aging heart.

Kaushik G, Spenlehauer A, Sessions AO, Trujillo AS, Fuhrmann A, Fu Z, Venkatraman V, Pohl D, Tuler J, Wang M, Lakatta EG, Ocorr K, Bodmer R, Bernstein SI, Van Eyk JE, Cammarato A, Engler AJ.

Sci Transl Med. 2015 Jun 17;7(292):292ra99. doi: 10.1126/scitranslmed.aaa5843.

14.

X-ray diffraction from flight muscle with a headless myosin mutation: implications for interpreting reflection patterns.

Iwamoto H, Trombitás K, Yagi N, Suggs JA, Bernstein SI.

Front Physiol. 2014 Oct 29;5:416. doi: 10.3389/fphys.2014.00416. eCollection 2014.

15.

The UNC-45 myosin chaperone: from worms to flies to vertebrates.

Lee CF, Melkani GC, Bernstein SI.

Int Rev Cell Mol Biol. 2014;313:103-44. doi: 10.1016/B978-0-12-800177-6.00004-9. Review.

16.

Getting folded: chaperone proteins in muscle development, maintenance and disease.

Smith DA, Carland CR, Guo Y, Bernstein SI.

Anat Rec (Hoboken). 2014 Sep;297(9):1637-49. doi: 10.1002/ar.22980. Review.

17.

Mapping interactions between myosin relay and converter domains that power muscle function.

Kronert WA, Melkani GC, Melkani A, Bernstein SI.

J Biol Chem. 2014 May 2;289(18):12779-90. doi: 10.1074/jbc.M114.550673. Epub 2014 Mar 13.

18.

Drosophila as a potential model to ameliorate mutant Huntington-mediated cardiac amyloidosis.

Trujillo AS, Ramos R, Bodmer R, Bernstein SI, Ocorr K, Melkani GC.

Rare Dis. 2014 Nov 3;2(1):e968003. doi: 10.4161/2167549X.2014.968003. eCollection 2014.

19.

Huntington's disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart.

Melkani GC, Trujillo AS, Ramos R, Bodmer R, Bernstein SI, Ocorr K.

PLoS Genet. 2013;9(12):e1004024. doi: 10.1371/journal.pgen.1004024. Epub 2013 Dec 19.

20.

The NADPH metabolic network regulates human αB-crystallin cardiomyopathy and reductive stress in Drosophila melanogaster.

Xie HB, Cammarato A, Rajasekaran NS, Zhang H, Suggs JA, Lin HC, Bernstein SI, Benjamin IJ, Golic KG.

PLoS Genet. 2013 Jun;9(6):e1003544. doi: 10.1371/journal.pgen.1003544. Epub 2013 Jun 20.

21.

Expression of the inclusion body myopathy 3 mutation in Drosophila depresses myosin function and stability and recapitulates muscle inclusions and weakness.

Wang Y, Melkani GC, Suggs JA, Melkani A, Kronert WA, Cammarato A, Bernstein SI.

Mol Biol Cell. 2012 Jun;23(11):2057-65. doi: 10.1091/mbc.E12-02-0120. Epub 2012 Apr 11.

22.

Introduction to methods in invertebrate muscle biology.

Bernstein SI, Benian GM.

Methods. 2012 Jan;56(1):1-2. doi: 10.1016/j.ymeth.2012.02.014. No abstract available.

PMID:
22405137
23.

Alternative relay and converter domains tune native muscle myosin isoform function in Drosophila.

Kronert WA, Melkani GC, Melkani A, Bernstein SI.

J Mol Biol. 2012 Mar 2;416(4):543-57. doi: 10.1016/j.jmb.2011.12.044. Epub 2011 Dec 28.

24.

Measuring passive myocardial stiffness in Drosophila melanogaster to investigate diastolic dysfunction.

Kaushik G, Zambon AC, Fuhrmann A, Bernstein SI, Bodmer R, Engler AJ, Cammarato A.

J Cell Mol Med. 2012 Aug;16(8):1656-62. doi: 10.1111/j.1582-4934.2011.01517.x. Review.

25.

Transgenic expression and purification of myosin isoforms using the Drosophila melanogaster indirect flight muscle system.

Caldwell JT, Melkani GC, Huxford T, Bernstein SI.

Methods. 2012 Jan;56(1):25-32. doi: 10.1016/j.ymeth.2011.12.002. Epub 2011 Dec 8.

26.

Structural basis for myopathic defects engendered by alterations in the myosin rod.

Cammarato A, Li XE, Reedy MC, Lee CF, Lehman W, Bernstein SI.

J Mol Biol. 2011 Dec 9;414(4):477-84. doi: 10.1016/j.jmb.2011.10.019. Epub 2011 Oct 20.

27.

Disrupting the myosin converter-relay interface impairs Drosophila indirect flight muscle performance.

Ramanath S, Wang Q, Bernstein SI, Swank DM.

Biophys J. 2011 Sep 7;101(5):1114-22. doi: 10.1016/j.bpj.2011.07.045.

28.

The UNC-45 chaperone is critical for establishing myosin-based myofibrillar organization and cardiac contractility in the Drosophila heart model.

Melkani GC, Bodmer R, Ocorr K, Bernstein SI.

PLoS One. 2011;6(7):e22579. doi: 10.1371/journal.pone.0022579. Epub 2011 Jul 25.

29.

Two Drosophila myosin transducer mutants with distinct cardiomyopathies have divergent ADP and actin affinities.

Bloemink MJ, Melkani GC, Dambacher CM, Bernstein SI, Geeves MA.

J Biol Chem. 2011 Aug 12;286(32):28435-43. doi: 10.1074/jbc.M111.258228. Epub 2011 Jun 16.

30.

A mighty small heart: the cardiac proteome of adult Drosophila melanogaster.

Cammarato A, Ahrens CH, Alayari NN, Qeli E, Rucker J, Reedy MC, Zmasek CM, Gucek M, Cole RN, Van Eyk JE, Bodmer R, O'Rourke B, Bernstein SI, Foster DB.

PLoS One. 2011 Apr 25;6(4):e18497. doi: 10.1371/journal.pone.0018497.

31.

X-ray crystal structure of the UCS domain-containing UNC-45 myosin chaperone from Drosophila melanogaster.

Lee CF, Hauenstein AV, Fleming JK, Gasper WC, Engelke V, Sankaran B, Bernstein SI, Huxford T.

Structure. 2011 Mar 9;19(3):397-408. doi: 10.1016/j.str.2011.01.002.

32.

Drosophila UNC-45 accumulates in embryonic blastoderm and in muscles, and is essential for muscle myosin stability.

Lee CF, Melkani GC, Yu Q, Suggs JA, Kronert WA, Suzuki Y, Hipolito L, Price MG, Epstein HF, Bernstein SI.

J Cell Sci. 2011 Mar 1;124(Pt 5):699-705. doi: 10.1242/jcs.078964. Epub 2011 Feb 1.

33.

Drosophila UNC-45 prevents heat-induced aggregation of skeletal muscle myosin and facilitates refolding of citrate synthase.

Melkani GC, Lee CF, Cammarato A, Bernstein SI.

Biochem Biophys Res Commun. 2010 May 28;396(2):317-22. doi: 10.1016/j.bbrc.2010.04.090. Epub 2010 Apr 18.

34.

Mutating the converter-relay interface of Drosophila myosin perturbs ATPase activity, actin motility, myofibril stability and flight ability.

Kronert WA, Melkani GC, Melkani A, Bernstein SI.

J Mol Biol. 2010 May 21;398(5):625-32. doi: 10.1016/j.jmb.2010.03.049. Epub 2010 Apr 1.

35.

Alternative S2 hinge regions of the myosin rod affect myofibrillar structure and myosin kinetics.

Miller MS, Dambacher CM, Knowles AF, Braddock JM, Farman GP, Irving TC, Swank DM, Bernstein SI, Maughan DW.

Biophys J. 2009 May 20;96(10):4132-43. doi: 10.1016/j.bpj.2009.02.034.

36.

Alternative exon 9-encoded relay domains affect more than one communication pathway in the Drosophila myosin head.

Bloemink MJ, Dambacher CM, Knowles AF, Melkani GC, Geeves MA, Bernstein SI.

J Mol Biol. 2009 Jun 19;389(4):707-21. doi: 10.1016/j.jmb.2009.04.036. Epub 2009 Apr 22.

37.

The XXXVII European muscle conference: Oxford September 2008.

Bernstein SI, Geeves MA.

J Muscle Res Cell Motil. 2008;29(6-8):253-6. doi: 10.1007/s10974-008-9151-z. Epub 2008 Nov 26. No abstract available.

PMID:
19034677
38.

Alternative versions of the myosin relay domain differentially respond to load to influence Drosophila muscle kinetics.

Yang C, Ramanath S, Kronert WA, Bernstein SI, Maughan DW, Swank DM.

Biophys J. 2008 Dec;95(11):5228-37. doi: 10.1529/biophysj.108.136192. Epub 2008 Sep 19.

39.

Similarities and differences between frozen-hydrated, rigor acto-S1 complexes of insect flight and chicken skeletal muscles.

Littlefield KP, Ward AB, Chappie JS, Reedy MK, Bernstein SI, Milligan RA, Reedy MC.

J Mol Biol. 2008 Sep 5;381(3):519-28. doi: 10.1016/j.jmb.2008.06.029. Epub 2008 Jun 17.

40.

Alternative relay domains of Drosophila melanogaster myosin differentially affect ATPase activity, in vitro motility, myofibril structure and muscle function.

Kronert WA, Dambacher CM, Knowles AF, Swank DM, Bernstein SI.

J Mol Biol. 2008 Jun 6;379(3):443-56. doi: 10.1016/j.jmb.2008.04.010. Epub 2008 Apr 10.

41.

Myosin transducer mutations differentially affect motor function, myofibril structure, and the performance of skeletal and cardiac muscles.

Cammarato A, Dambacher CM, Knowles AF, Kronert WA, Bodmer R, Ocorr K, Bernstein SI.

Mol Biol Cell. 2008 Feb;19(2):553-62. Epub 2007 Nov 28.

42.

A variable domain near the ATP-binding site in Drosophila muscle myosin is part of the communication pathway between the nucleotide and actin-binding sites.

Miller BM, Bloemink MJ, Nyitrai M, Bernstein SI, Geeves MA.

J Mol Biol. 2007 May 11;368(4):1051-66. Epub 2007 Feb 22.

43.

Alternative S2 hinge regions of the myosin rod differentially affect muscle function, myofibril dimensions and myosin tail length.

Suggs JA, Cammarato A, Kronert WA, Nikkhoy M, Dambacher CM, Megighian A, Bernstein SI.

J Mol Biol. 2007 Apr 13;367(5):1312-29. Epub 2007 Jan 23.

44.

Transcriptional regulation of the Drosophila melanogaster muscle myosin heavy-chain gene.

Hess NK, Singer PA, Trinh K, Nikkhoy M, Bernstein SI.

Gene Expr Patterns. 2007 Feb;7(4):413-22. Epub 2006 Nov 26.

45.

Passive stiffness in Drosophila indirect flight muscle reduced by disrupting paramyosin phosphorylation, but not by embryonic myosin S2 hinge substitution.

Hao Y, Miller MS, Swank DM, Liu H, Bernstein SI, Maughan DW, Pollack GH.

Biophys J. 2006 Dec 15;91(12):4500-6. Epub 2006 Sep 29.

46.

alphaB-crystallin maintains skeletal muscle myosin enzymatic activity and prevents its aggregation under heat-shock stress.

Melkani GC, Cammarato A, Bernstein SI.

J Mol Biol. 2006 May 5;358(3):635-45. Epub 2006 Mar 3.

PMID:
16546210
47.

An alternative domain near the ATP binding pocket of Drosophila myosin affects muscle fiber kinetics.

Swank DM, Braddock J, Brown W, Lesage H, Bernstein SI, Maughan DW.

Biophys J. 2006 Apr 1;90(7):2427-35. Epub 2006 Jan 6.

48.

An alternative domain near the nucleotide-binding site of Drosophila muscle myosin affects ATPase kinetics.

Miller BM, Zhang S, Suggs JA, Swank DM, Littlefield KP, Knowles AF, Bernstein SI.

J Mol Biol. 2005 Oct 14;353(1):14-25.

PMID:
16154586
49.

Paramyosin phosphorylation site disruption affects indirect flight muscle stiffness and power generation in Drosophila melanogaster.

Liu H, Miller MS, Swank DM, Kronert WA, Maughan DW, Bernstein SI.

Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10522-7. Epub 2005 Jul 14.

50.

Drosophila paramyosin is important for myoblast fusion and essential for myofibril formation.

Liu H, Mardahl-Dumesnil M, Sweeney ST, O'Kane CJ, Bernstein SI.

J Cell Biol. 2004 Nov 22;167(4):783. No abstract available.

Supplemental Content

Loading ...
Support Center