Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 108

1.

Type 9 secretion system structures reveal a new protein transport mechanism.

Lauber F, Deme JC, Lea SM, Berks BC.

Nature. 2018 Dec;564(7734):77-82. doi: 10.1038/s41586-018-0693-y. Epub 2018 Nov 7.

PMID:
30405243
2.

Precursor-Receptor Interactions in the Twin Arginine Protein Transport Pathway Probed with a New Receptor Complex Preparation.

Wojnowska M, Gault J, Yong SC, Robinson CV, Berks BC.

Biochemistry. 2018 Mar 13;57(10):1663-1671. doi: 10.1021/acs.biochem.8b00026. Epub 2018 Feb 26.

3.

In vivo experiments do not support the charge zipper model for Tat translocase assembly.

Alcock F, Damen MP, Levring J, Berks BC.

Elife. 2017 Aug 31;6. pii: e30127. doi: 10.7554/eLife.30127.

4.

Intermediates in the Sox sulfur oxidation pathway are bound to a sulfane conjugate of the carrier protein SoxYZ.

Grabarczyk DB, Berks BC.

PLoS One. 2017 Mar 3;12(3):e0173395. doi: 10.1371/journal.pone.0173395. eCollection 2017.

5.

A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase.

Huang Q, Alcock F, Kneuper H, Deme JC, Rollauer SE, Lea SM, Berks BC, Palmer T.

Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1958-E1967. doi: 10.1073/pnas.1615056114. Epub 2017 Feb 21.

6.

Assembling the Tat protein translocase.

Alcock F, Stansfeld PJ, Basit H, Habersetzer J, Baker MA, Palmer T, Wallace MI, Berks BC.

Elife. 2016 Dec 3;5. pii: e20718. doi: 10.7554/eLife.20718.

7.

Structural basis for specificity and promiscuity in a carrier protein/enzyme system from the sulfur cycle.

Grabarczyk DB, Chappell PE, Johnson S, Stelzl LS, Lea SM, Berks BC.

Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):E7166-75. doi: 10.1073/pnas.1506386112. Epub 2015 Dec 11.

8.

The TatC component of the twin-arginine protein translocase functions as an obligate oligomer.

Cléon F, Habersetzer J, Alcock F, Kneuper H, Stansfeld PJ, Basit H, Wallace MI, Berks BC, Palmer T.

Mol Microbiol. 2015 Oct;98(1):111-29. doi: 10.1111/mmi.13106. Epub 2015 Jul 22.

9.

Mechanism of thiosulfate oxidation in the SoxA family of cysteine-ligated cytochromes.

Grabarczyk DB, Chappell PE, Eisel B, Johnson S, Lea SM, Berks BC.

J Biol Chem. 2015 Apr 3;290(14):9209-21. doi: 10.1074/jbc.M114.618025. Epub 2015 Feb 11.

10.

The twin-arginine protein translocation pathway.

Berks BC.

Annu Rev Biochem. 2015;84:843-64. doi: 10.1146/annurev-biochem-060614-034251. Epub 2014 Dec 8. Review.

PMID:
25494301
11.

Crystal structure of the Bacillus subtilis phosphodiesterase PhoD reveals an iron and calcium-containing active site.

Rodriguez F, Lillington J, Johnson S, Timmel CR, Lea SM, Berks BC.

J Biol Chem. 2014 Nov 7;289(45):30889-99. doi: 10.1074/jbc.M114.604892. Epub 2014 Sep 12.

12.

A complex iron-calcium cofactor catalyzing phosphotransfer chemistry.

Yong SC, Roversi P, Lillington J, Rodriguez F, Krehenbrink M, Zeldin OB, Garman EF, Lea SM, Berks BC.

Science. 2014 Sep 5;345(6201):1170-1173. doi: 10.1126/science.1254237.

13.

Structural biology of Tat protein transport.

Berks BC, Lea SM, Stansfeld PJ.

Curr Opin Struct Biol. 2014 Aug;27:32-7. doi: 10.1016/j.sbi.2014.03.003. Epub 2014 Apr 5. Review.

14.

Live cell imaging shows reversible assembly of the TatA component of the twin-arginine protein transport system.

Alcock F, Baker MA, Greene NP, Palmer T, Wallace MI, Berks BC.

Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):E3650-9. doi: 10.1073/pnas.1306738110. Epub 2013 Sep 3.

15.

Structural model for the protein-translocating element of the twin-arginine transport system.

Rodriguez F, Rouse SL, Tait CE, Harmer J, De Riso A, Timmel CR, Sansom MS, Berks BC, Schnell JR.

Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):E1092-101. doi: 10.1073/pnas.1219486110. Epub 2013 Mar 7.

16.

Structure of the TatC core of the twin-arginine protein transport system.

Rollauer SE, Tarry MJ, Graham JE, Jääskeläinen M, Jäger F, Johnson S, Krehenbrink M, Liu SM, Lukey MJ, Marcoux J, McDowell MA, Rodriguez F, Roversi P, Stansfeld PJ, Robinson CV, Sansom MS, Palmer T, Högbom M, Berks BC, Lea SM.

Nature. 2012 Dec 13;492(7428):210-4. doi: 10.1038/nature11683. Epub 2012 Dec 2.

17.

Redox and chemical activities of the hemes in the sulfur oxidation pathway enzyme SoxAX.

Bradley JM, Marritt SJ, Kihlken MA, Haynes K, Hemmings AM, Berks BC, Cheesman MR, Butt JN.

J Biol Chem. 2012 Nov 23;287(48):40350-9. doi: 10.1074/jbc.M112.396192. Epub 2012 Oct 11.

18.

Molecular dissection of TatC defines critical regions essential for protein transport and a TatB-TatC contact site.

Kneuper H, Maldonado B, Jäger F, Krehenbrink M, Buchanan G, Keller R, Müller M, Berks BC, Palmer T.

Mol Microbiol. 2012 Sep;85(5):945-61. doi: 10.1111/j.1365-2958.2012.08151.x. Epub 2012 Jul 13.

19.

The twin-arginine translocation (Tat) protein export pathway.

Palmer T, Berks BC.

Nat Rev Microbiol. 2012 Jun 11;10(7):483-96. doi: 10.1038/nrmicro2814. Review.

PMID:
22683878
20.

Processing by rhomboid protease is required for Providencia stuartii TatA to interact with TatC and to form functional homo-oligomeric complexes.

Fritsch MJ, Krehenbrink M, Tarry MJ, Berks BC, Palmer T.

Mol Microbiol. 2012 Jun;84(6):1108-23. doi: 10.1111/j.1365-2958.2012.08080.x. Epub 2012 May 17.

21.

Thiosulfate reduction in Salmonella enterica is driven by the proton motive force.

Stoffels L, Krehenbrink M, Berks BC, Unden G.

J Bacteriol. 2012 Jan;194(2):475-85. doi: 10.1128/JB.06014-11. Epub 2011 Nov 11.

22.

Genetic evidence for a TatC dimer at the core of the Escherichia coli twin arginine (Tat) protein translocase.

Maldonado B, Buchanan G, Müller M, Berks BC, Palmer T.

J Mol Microbiol Biotechnol. 2011;20(3):168-75. doi: 10.1159/000329076. Epub 2011 Jun 28.

23.

Characterisation of the membrane-extrinsic domain of the TatB component of the twin arginine protein translocase.

Maldonado B, Kneuper H, Buchanan G, Hatzixanthis K, Sargent F, Berks BC, Palmer T.

FEBS Lett. 2011 Feb 4;585(3):478-84. doi: 10.1016/j.febslet.2011.01.016. Epub 2011 Jan 13.

24.

The Tat Protein Export Pathway.

Palmer T, Sargent F, Berks BC.

EcoSal Plus. 2010 Sep;4(1). doi: 10.1128/ecosalplus.4.3.2.

PMID:
26443788
25.

Analysis of Tat targeting function and twin-arginine signal peptide activity in Escherichia coli.

Palmer T, Berks BC, Sargent F.

Methods Mol Biol. 2010;619:191-216. doi: 10.1007/978-1-60327-412-8_12.

PMID:
20419412
26.

Subunit organization in the TatA complex of the twin arginine protein translocase: a site-directed EPR spin labeling study.

White GF, Schermann SM, Bradley J, Roberts A, Greene NP, Berks BC, Thomson AJ.

J Biol Chem. 2010 Jan 22;285(4):2294-301. doi: 10.1074/jbc.M109.065458. Epub 2009 Nov 17.

27.

Structural analysis of substrate binding by the TatBC component of the twin-arginine protein transport system.

Tarry MJ, Schäfer E, Chen S, Buchanan G, Greene NP, Lea SM, Palmer T, Saibil HR, Berks BC.

Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13284-9. doi: 10.1073/pnas.0901566106. Epub 2009 Jul 29.

28.

Mechanism for the hydrolysis of a sulfur-sulfur bond based on the crystal structure of the thiosulfohydrolase SoxB.

Sauvé V, Roversi P, Leath KJ, Garman EF, Antrobus R, Lea SM, Berks BC.

J Biol Chem. 2009 Aug 7;284(32):21707-18. doi: 10.1074/jbc.M109.002709. Epub 2009 Jun 16.

29.

The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure.

Tarry M, Arends SJ, Roversi P, Piette E, Sargent F, Berks BC, Weiss DS, Lea SM.

J Mol Biol. 2009 Feb 20;386(2):504-19. doi: 10.1016/j.jmb.2008.12.043. Epub 2008 Dec 25.

30.

Biochemistry: Cells enforce an ion curtain.

Berks BC.

Nature. 2008 Oct 23;455(7216):1043-4. doi: 10.1038/4551043a. No abstract available.

PMID:
18948937
31.

Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging.

Leake MC, Greene NP, Godun RM, Granjon T, Buchanan G, Chen S, Berry RM, Palmer T, Berks BC.

Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15376-81. doi: 10.1073/pnas.0806338105. Epub 2008 Oct 1.

32.

TatBC, TatB, and TatC form structurally autonomous units within the twin arginine protein transport system of Escherichia coli.

Orriss GL, Tarry MJ, Ize B, Sargent F, Lea SM, Palmer T, Berks BC.

FEBS Lett. 2007 Aug 21;581(21):4091-7. Epub 2007 Jul 30.

33.

Cysteine scanning mutagenesis and disulfide mapping studies of the TatA component of the bacterial twin arginine translocase.

Greene NP, Porcelli I, Buchanan G, Hicks MG, Schermann SM, Palmer T, Berks BC.

J Biol Chem. 2007 Aug 17;282(33):23937-45. Epub 2007 Jun 12.

34.

Cysteine scanning mutagenesis and topological mapping of the Escherichia coli twin-arginine translocase TatC Component.

Punginelli C, Maldonado B, Grahl S, Jack R, Alami M, Schröder J, Berks BC, Palmer T.

J Bacteriol. 2007 Aug;189(15):5482-94. Epub 2007 Jun 1.

35.

The SoxYZ complex carries sulfur cycle intermediates on a peptide swinging arm.

Sauvé V, Bruno S, Berks BC, Hemmings AM.

J Biol Chem. 2007 Aug 10;282(32):23194-204. Epub 2007 May 23.

36.
37.

Cysteine-scanning mutagenesis and disulfide mapping studies of the conserved domain of the twin-arginine translocase TatB component.

Lee PA, Orriss GL, Buchanan G, Greene NP, Bond PJ, Punginelli C, Jack RL, Sansom MS, Berks BC, Palmer T.

J Biol Chem. 2006 Nov 10;281(45):34072-85. Epub 2006 Sep 13.

38.

Formation of functional Tat translocases from heterologous components.

Hicks MG, Guymer D, Buchanan G, Widdick DA, Caldelari I, Berks BC, Palmer T.

BMC Microbiol. 2006 Jul 19;6:64.

39.

Pathfinders and trailblazers: a prokaryotic targeting system for transport of folded proteins.

Sargent F, Berks BC, Palmer T.

FEMS Microbiol Lett. 2006 Jan;254(2):198-207. Review.

40.

Formation of a cytochrome c-nitrous oxide reductase complex is obligatory for N2O reduction by Paracoccus pantotrophus.

Rasmussen T, Brittain T, Berks BC, Watmough NJ, Thomson AJ.

Dalton Trans. 2005 Nov 7;(21):3501-6. Epub 2005 Sep 23.

PMID:
16234931
41.

The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter.

Gohlke U, Pullan L, McDevitt CA, Porcelli I, de Leeuw E, Palmer T, Saibil HR, Berks BC.

Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10482-6. Epub 2005 Jul 18.

42.

Export of complex cofactor-containing proteins by the bacterial Tat pathway.

Palmer T, Sargent F, Berks BC.

Trends Microbiol. 2005 Apr;13(4):175-80. Review.

PMID:
15817387
43.

Positive selection for loss-of-function tat mutations identifies critical residues required for TatA activity.

Hicks MG, Lee PA, Georgiou G, Berks BC, Palmer T.

J Bacteriol. 2005 Apr;187(8):2920-5.

44.

Protein targeting by the bacterial twin-arginine translocation (Tat) pathway.

Berks BC, Palmer T, Sargent F.

Curr Opin Microbiol. 2005 Apr;8(2):174-81. Review.

PMID:
15802249
45.

Characterisation of Tat protein transport complexes carrying inactivating mutations.

McDevitt CA, Hicks MG, Palmer T, Berks BC.

Biochem Biophys Res Commun. 2005 Apr 8;329(2):693-8.

PMID:
15737641
46.

Novel phenotypes of Escherichia coli tat mutants revealed by global gene expression and phenotypic analysis.

Ize B, Porcelli I, Lucchini S, Hinton JC, Berks BC, Palmer T.

J Biol Chem. 2004 Nov 12;279(46):47543-54. Epub 2004 Aug 30.

47.

mRNA secondary structure modulates translation of Tat-dependent formate dehydrogenase N.

Punginelli C, Ize B, Stanley NR, Stewart V, Sawers G, Berks BC, Palmer T.

J Bacteriol. 2004 Sep;186(18):6311-5.

48.

Light traffic: photo-crosslinking a novel transport system.

Palmer T, Sargent F, Berks BC.

Trends Biochem Sci. 2004 Feb;29(2):55-7.

PMID:
15106605
49.

The Tat protein translocation pathway and its role in microbial physiology.

Berks BC, Palmer T, Sargent F.

Adv Microb Physiol. 2003;47:187-254. Review.

PMID:
14560665
50.

The Escherichia coli twin-arginine translocase: conserved residues of TatA and TatB family components involved in protein transport.

Hicks MG, de Leeuw E, Porcelli I, Buchanan G, Berks BC, Palmer T.

FEBS Lett. 2003 Mar 27;539(1-3):61-7.

Supplemental Content

Loading ...
Support Center