Send to

Choose Destination
Plant Physiol. 2000 Feb;122(2):535-42.

Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing.

Author information

Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA.


Either of the first two introns of the Arabidopsis tryptophan pathway gene PAT1 elevates mRNA accumulation from a PAT1:beta-glucuronidase (GUS) fusion roughly 5-fold without affecting the rate of PAT1:GUS transcription. To further explore the mechanism of this intron-mediated enhancement of gene expression, we wanted to determine whether splicing or specific intron sequences were necessary. In-frame derivatives of PAT1 intron 1, whose splicing was prevented by a point mutation or large deletions, were able to increase mRNA accumulation from a PAT1:GUS fusion, demonstrating that splicing per se is not required. Furthermore, each of a series of introns containing overlapping deletions that together span PAT1 intron 1 increased PAT1:GUS mRNA accumulation as much as the full-length intron did, indicating that all intron sequences are individually dispensable for this phenomenon. These results eliminate the simple idea that this intron stimulates mRNA accumulation via a unique RNA-stabilizing sequence or through the completed act of splicing. However, they are consistent with a possible role for redundant intron sequence elements or an association of the pre-mRNA with the spliceosome.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center