Format

Send to

Choose Destination
Biol Bull. 2002 Feb;202(1):74-85.

Specificity of a model cnidarian-dinoflagellate symbiosis.

Author information

1
Marine Biotechnology Institute Co., Ltd., Kamaishi Laboratories, Heita, Kamaishi City, Iwate 026-0001, Japan. carmen.baillie@csiro.au

Abstract

To understand the flexibility of symbiotic associations in coral reefs, we investigated the specificity of the Aiptasia (cf. insignis)-Symbiodinium association in the laboratory by rendering the anemones aposymbiotic and inoculating them with different isolates of SYMBIODINIUM: Infective algal symbionts were monitored over 3 months by re-isolation and identification using denaturing-gradient gel electrophoresis and sequence comparison of their amplified 18S rRNA hypervariable V1 + V2 gene region. Despite similarity in their external morphology, the algal isolates differed in their infectivity towards the host. Within days of single-isolate inoculation, aposymbiotic anemones formed associations with fresh or cultured isolates (clade B) from the anemones Aiptasia sp. or A. tagetes, respectively. They associated to a limited extent with cultured isolates (clade A) from the tridacnids Tridacna crocea or Hippopus hippopus, and not at all with a cultured isolate (clade C) from the stony coral Montipora verrucosa, nor with a free-living isolate (clade A) from subtidal sands. Aposymbiotic anemones inoculated with a mixture of all isolates had only the anemone taxon as their detectable symbionts. Re-inoculation of induced symbioses with a mixture of all isolates and incubation with wild anemones showed that the initial induced symbioses with the anemone taxon were stable. Anemones originally infected with tridacnid isolates either additionally acquired the anemone taxon or had the former outgrown by the latter. These results demonstrate the presence of a host-symbiont recognition mechanism, and possibly competition among potential algal symbionts in the Aiptasia-Symbiodinium association. Here we present a method that may be useful in monitoring the algal population dynamics in symbiotic corals in the field, along with an efficient method of rendering Aiptasia aposymbiotic for further laboratory investigation of Aiptasia-Symbiodinium symbioses.

PMID:
11842017
DOI:
10.2307/1543224
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for University of Chicago Press
Loading ...
Support Center