Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 41

1.

Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells.

Pickar-Oliver A, Black JB, Lewis MM, Mutchnick KJ, Klann TS, Gilcrest KA, Sitton MJ, Nelson CE, Barrera A, Bartelt LC, Reddy TE, Beisel CL, Barrangou R, Gersbach CA.

Nat Biotechnol. 2019 Sep 23. doi: 10.1038/s41587-019-0235-7. [Epub ahead of print]

PMID:
31548729
2.

Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis.

Liao C, Ttofali F, Slotkowski RA, Denny SR, Cecil TD, Leenay RT, Keung AJ, Beisel CL.

Nat Commun. 2019 Jul 3;10(1):2948. doi: 10.1038/s41467-019-10747-3.

3.

Barriers to genome editing with CRISPR in bacteria.

Vento JM, Crook N, Beisel CL.

J Ind Microbiol Biotechnol. 2019 Jun 5. doi: 10.1007/s10295-019-02195-1. [Epub ahead of print]

PMID:
31165970
4.

An enhanced assay to characterize anti-CRISPR proteins using a cell-free transcription-translation system.

Wandera KG, Collins SP, Wimmer F, Marshall R, Noireaux V, Beisel CL.

Methods. 2019 May 21. pii: S1046-2023(19)30001-5. doi: 10.1016/j.ymeth.2019.05.014. [Epub ahead of print]

PMID:
31121300
5.

The Acidaminococcus sp. Cas12a nuclease recognizes GTTV and GCTV as non-canonical PAMs.

Jacobsen T, Liao C, Beisel CL.

FEMS Microbiol Lett. 2019 Apr 1;366(8). pii: fnz085. doi: 10.1093/femsle/fnz085.

PMID:
31004485
6.

Characterization of the all-E. coli transcription-translation system myTXTL by mass spectrometry.

Garenne D, Beisel CL, Noireaux V.

Rapid Commun Mass Spectrom. 2019 May 15;33(11):1036-1048. doi: 10.1002/rcm.8438.

PMID:
30900355
7.

Distinct timescales of RNA regulators enable the construction of a genetic pulse generator.

Westbrook A, Tang X, Marshall R, Maxwell CS, Chappell J, Agrawal DK, Dunlop MJ, Noireaux V, Beisel CL, Lucks J, Franco E.

Biotechnol Bioeng. 2019 May;116(5):1139-1151. doi: 10.1002/bit.26918. Epub 2019 Feb 4.

PMID:
30636320
8.

CRISPR tool puts RNA on the record.

Beisel CL.

Nature. 2018 Oct;562(7727):347-349. doi: 10.1038/d41586-018-06869-1. No abstract available.

PMID:
30323226
9.

The Francisella novicida Cas12a is sensitive to the structure downstream of the terminal repeat in CRISPR arrays.

Liao C, Slotkowski RA, Achmedov T, Beisel CL.

RNA Biol. 2019 Apr;16(4):404-412. doi: 10.1080/15476286.2018.1526537. Epub 2018 Oct 12.

PMID:
30252595
10.

Advances in CRISPR Technologies for Microbial Strain Engineering.

Alper HS, Beisel CL.

Biotechnol J. 2018 Sep;13(9):e1800460. doi: 10.1002/biot.201800460. No abstract available.

PMID:
30175907
11.

Genome Editing with CRISPR-Cas9 in Lactobacillus plantarum Revealed That Editing Outcomes Can Vary Across Strains and Between Methods.

Leenay RT, Vento JM, Shah M, Martino ME, Leulier F, Beisel CL.

Biotechnol J. 2019 Mar;14(3):e1700583. doi: 10.1002/biot.201700583. Epub 2018 Sep 20.

PMID:
30156038
12.

Mathematical Modeling of RNA-Based Architectures for Closed Loop Control of Gene Expression.

Agrawal DK, Tang X, Westbrook A, Marshall R, Maxwell CS, Lucks J, Noireaux V, Beisel CL, Dunlop MJ, Franco E.

ACS Synth Biol. 2018 May 18;7(5):1219-1228. doi: 10.1021/acssynbio.8b00040. Epub 2018 May 8.

PMID:
29709170
13.

Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications.

Bober JR, Beisel CL, Nair NU.

Annu Rev Biomed Eng. 2018 Jun 4;20:277-300. doi: 10.1146/annurev-bioeng-062117-121019. Epub 2018 Mar 12. Review.

14.

CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the Campylobacter jejuni Cas9.

Dugar G, Leenay RT, Eisenbart SK, Bischler T, Aul BU, Beisel CL, Sharma CM.

Mol Cell. 2018 Mar 1;69(5):893-905.e7. doi: 10.1016/j.molcel.2018.01.032.

15.

A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs.

Maxwell CS, Jacobsen T, Marshall R, Noireaux V, Beisel CL.

Methods. 2018 Jul 1;143:48-57. doi: 10.1016/j.ymeth.2018.02.016. Epub 2018 Feb 24.

16.

Rapid and Scalable Characterization of CRISPR Technologies Using an E. coli Cell-Free Transcription-Translation System.

Marshall R, Maxwell CS, Collins SP, Jacobsen T, Luo ML, Begemann MB, Gray BN, January E, Singer A, He Y, Beisel CL, Noireaux V.

Mol Cell. 2018 Jan 4;69(1):146-157.e3. doi: 10.1016/j.molcel.2017.12.007.

17.

Toward a genetic tool development pipeline for host-associated bacteria.

Waller MC, Bober JR, Nair NU, Beisel CL.

Curr Opin Microbiol. 2017 Aug;38:156-164. doi: 10.1016/j.mib.2017.05.006. Epub 2017 Jun 15. Review.

18.

Short DNA containing χ sites enhances DNA stability and gene expression in E. coli cell-free transcription-translation systems.

Marshall R, Maxwell CS, Collins SP, Beisel CL, Noireaux V.

Biotechnol Bioeng. 2017 Sep;114(9):2137-2141. doi: 10.1002/bit.26333. Epub 2017 May 23.

19.

Deciphering, Communicating, and Engineering the CRISPR PAM.

Leenay RT, Beisel CL.

J Mol Biol. 2017 Jan 20;429(2):177-191. doi: 10.1016/j.jmb.2016.11.024. Epub 2016 Dec 1. Review.

20.

The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers.

Luo ML, Jackson RN, Denny SR, Tokmina-Lukaszewska M, Maksimchuk KR, Lin W, Bothner B, Wiedenheft B, Beisel CL.

Nucleic Acids Res. 2016 Sep 6;44(15):7385-94. doi: 10.1093/nar/gkw421. Epub 2016 May 12.

21.

Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems.

Leenay RT, Maksimchuk KR, Slotkowski RA, Agrawal RN, Gomaa AA, Briner AE, Barrangou R, Beisel CL.

Mol Cell. 2016 Apr 7;62(1):137-47. doi: 10.1016/j.molcel.2016.02.031. Epub 2016 Mar 31.

22.

Rethinking the Hierarchy of Sugar Utilization in Bacteria.

Beisel CL, Afroz T.

J Bacteriol. 2015 Nov 16;198(3):374-6. doi: 10.1128/JB.00890-15. Print 2016 Feb 1.

23.

Current and future prospects for CRISPR-based tools in bacteria.

Luo ML, Leenay RT, Beisel CL.

Biotechnol Bioeng. 2016 May;113(5):930-43. doi: 10.1002/bit.25851. Epub 2015 Oct 27. Review.

24.

Impact of Residual Inducer on Titratable Expression Systems.

Afroz T, Luo ML, Beisel CL.

PLoS One. 2015 Sep 8;10(9):e0137421. doi: 10.1371/journal.pone.0137421. eCollection 2015.

25.

Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing.

Sun W, Ji W, Hall JM, Hu Q, Wang C, Beisel CL, Gu Z.

Angew Chem Int Ed Engl. 2015 Oct 5;54(41):12029-33. doi: 10.1002/anie.201506030. Epub 2015 Aug 27.

26.

A CRISPR design for next-generation antimicrobials.

Beisel CL, Gomaa AA, Barrangou R.

Genome Biol. 2014 Nov 8;15(11):516. doi: 10.1186/s13059-014-0516-x.

27.

Guide RNA functional modules direct Cas9 activity and orthogonality.

Briner AE, Donohoue PD, Gomaa AA, Selle K, Slorach EM, Nye CH, Haurwitz RE, Beisel CL, May AP, Barrangou R.

Mol Cell. 2014 Oct 23;56(2):333-339. doi: 10.1016/j.molcel.2014.09.019. Epub 2014 Oct 16.

28.

Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression.

Luo ML, Mullis AS, Leenay RT, Beisel CL.

Nucleic Acids Res. 2015 Jan;43(1):674-81. doi: 10.1093/nar/gku971. Epub 2014 Oct 17.

29.

Bacterial sugar utilization gives rise to distinct single-cell behaviours.

Afroz T, Biliouris K, Kaznessis Y, Beisel CL.

Mol Microbiol. 2014 Sep;93(6):1093-1103. doi: 10.1111/mmi.12695. Epub 2014 Jul 16.

30.

Trade-offs in engineering sugar utilization pathways for titratable control.

Afroz T, Biliouris K, Boykin KE, Kaznessis Y, Beisel CL.

ACS Synth Biol. 2015 Feb 20;4(2):141-9. doi: 10.1021/sb400162z. Epub 2014 Apr 28.

31.

Construction of ligand-responsive microRNAs that operate through inhibition of Drosha processing.

Beisel CL, Bloom RJ, Smolke CD.

Methods Mol Biol. 2014;1111:259-67. doi: 10.1007/978-1-62703-755-6_19.

PMID:
24549626
32.

Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems.

Gomaa AA, Klumpe HE, Luo ML, Selle K, Barrangou R, Beisel CL.

MBio. 2014 Jan 28;5(1):e00928-13. doi: 10.1128/mBio.00928-13.

33.

Multiple factors dictate target selection by Hfq-binding small RNAs.

Beisel CL, Updegrove TB, Janson BJ, Storz G.

EMBO J. 2012 Apr 18;31(8):1961-74. doi: 10.1038/emboj.2012.52. Epub 2012 Mar 2.

34.

Discriminating tastes: physiological contributions of the Hfq-binding small RNA Spot 42 to catabolite repression.

Beisel CL, Storz G.

RNA Biol. 2011 Sep-Oct;8(5):766-70. doi: 10.4161/rna.8.5.16024. Epub 2011 Jul 26.

35.
36.

Design of small molecule-responsive microRNAs based on structural requirements for Drosha processing.

Beisel CL, Chen YY, Culler SJ, Hoff KG, Smolke CD.

Nucleic Acids Res. 2011 Apr;39(7):2981-94. doi: 10.1093/nar/gkq954. Epub 2010 Dec 11.

37.

Base pairing small RNAs and their roles in global regulatory networks.

Beisel CL, Storz G.

FEMS Microbiol Rev. 2010 Sep;34(5):866-82. doi: 10.1111/j.1574-6976.2010.00241.x. Epub 2010 Jun 23. Review.

38.

Design principles for riboswitch function.

Beisel CL, Smolke CD.

PLoS Comput Biol. 2009 Apr;5(4):e1000363. doi: 10.1371/journal.pcbi.1000363. Epub 2009 Apr 17.

39.

Synthetic control of a fitness tradeoff in yeast nitrogen metabolism.

Bayer TS, Hoff KG, Beisel CL, Lee JJ, Smolke CD.

J Biol Eng. 2009 Jan 2;3:1. doi: 10.1186/1754-1611-3-1.

40.

Model-guided design of ligand-regulated RNAi for programmable control of gene expression.

Beisel CL, Bayer TS, Hoff KG, Smolke CD.

Mol Syst Biol. 2008;4:224. doi: 10.1038/msb.2008.62. Epub 2008 Oct 28.

41.

Cochlear whole mount in situ hybridization: identification of longitudinal and radial gradients.

Judice TN, Nelson NC, Beisel CL, Delimont DC, Fritzsch B, Beisel KW.

Brain Res Brain Res Protoc. 2002 Feb;9(1):65-76.

PMID:
11852272

Supplemental Content

Loading ...
Support Center