Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 67

1.

Altered plant and nodule development and protein S-nitrosylation in Lotus japonicus mutants deficient in S-nitrosoglutathione reductases.

Matamoros MA, Cutrona MC, Wienkoop S, Begara-Morales JC, Sandal N, Orera I, Barroso JB, Stougaard J, Becana M.

Plant Cell Physiol. 2019 Sep 16. pii: pcz182. doi: 10.1093/pcp/pcz182. [Epub ahead of print]

PMID:
31529085
2.

CRISPR/Cas9 knockout of leghemoglobin genes in Lotus japonicus uncovers their synergistic roles in symbiotic nitrogen fixation.

Wang L, Rubio MC, Xin X, Zhang B, Fan Q, Wang Q, Ning G, Becana M, Duanmu D.

New Phytol. 2019 Oct;224(2):818-832. doi: 10.1111/nph.16077. Epub 2019 Aug 31.

PMID:
31355948
3.

Phytoglobins in the nuclei, cytoplasm and chloroplasts modulate nitric oxide signaling and interact with abscisic acid.

Rubio MC, Calvo-Begueria L, Díaz-Mendoza M, Elhiti M, Moore M, Matamoros MA, James EK, Díaz I, Pérez-Rontomé C, Villar I, Sein-Echaluce VC, Hebelstrup KH, Dietz KJ, Becana M.

Plant J. 2019 Oct;100(1):38-54. doi: 10.1111/tpj.14422. Epub 2019 Jul 8.

PMID:
31148289
4.

Stably Transformed Lotus japonicus Plants Overexpressing Phytoglobin LjGlb1-1 Show Decreased Nitric Oxide Levels in Roots and Nodules as Well as Delayed Nodule Senescence.

Fukudome M, Watanabe E, Osuki KI, Imaizumi R, Aoki T, Becana M, Uchiumi T.

Plant Cell Physiol. 2019 Apr 1;60(4):816-825. doi: 10.1093/pcp/pcy245.

PMID:
30597068
5.

Sulfate is transported at significant rates through the symbiosome membrane and is crucial for nitrogenase biosynthesis.

Schneider S, Schintlmeister A, Becana M, Wagner M, Woebken D, Wienkoop S.

Plant Cell Environ. 2019 Apr;42(4):1180-1189. doi: 10.1111/pce.13481. Epub 2019 Jan 28.

6.

Sulfur Transport and Metabolism in Legume Root Nodules.

Becana M, Wienkoop S, Matamoros MA.

Front Plant Sci. 2018 Oct 10;9:1434. doi: 10.3389/fpls.2018.01434. eCollection 2018. Review.

7.

Protein Carbonylation and Glycation in Legume Nodules.

Matamoros MA, Kim A, Peñuelas M, Ihling C, Griesser E, Hoffmann R, Fedorova M, Frolov A, Becana M.

Plant Physiol. 2018 Aug;177(4):1510-1528. doi: 10.1104/pp.18.00533. Epub 2018 Jul 3.

8.

Redefining nitric oxide production in legume nodules through complementary insights from electron paramagnetic resonance spectroscopy and specific fluorescent probes.

Calvo-Begueria L, Rubio MC, Martínez JI, Pérez-Rontomé C, Delgado MJ, Bedmar EJ, Becana M.

J Exp Bot. 2018 Jun 27;69(15):3703-3714. doi: 10.1093/jxb/ery159.

9.

Characterization of the Heme Pocket Structure and Ligand Binding Kinetics of Non-symbiotic Hemoglobins from the Model Legume Lotus japonicus.

Calvo-Begueria L, Cuypers B, Van Doorslaer S, Abbruzzetti S, Bruno S, Berghmans H, Dewilde S, Ramos J, Viappiani C, Becana M.

Front Plant Sci. 2017 Apr 4;8:407. doi: 10.3389/fpls.2017.00407. eCollection 2017.

10.

Hemoglobin LjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in the Lotus japonicus-Mesorhizobium loti symbiosis.

Fukudome M, Calvo-Begueria L, Kado T, Osuki K, Rubio MC, Murakami E, Nagata M, Kucho K, Sandal N, Stougaard J, Becana M, Uchiumi T.

J Exp Bot. 2016 Sep;67(17):5275-83. doi: 10.1093/jxb/erw290. Epub 2016 Jul 21.

11.

Function of glutathione peroxidases in legume root nodules.

Matamoros MA, Saiz A, Peñuelas M, Bustos-Sanmamed P, Mulet JM, Barja MV, Rouhier N, Moore M, James EK, Dietz KJ, Becana M.

J Exp Bot. 2015 May;66(10):2979-90. doi: 10.1093/jxb/erv066. Epub 2015 Mar 4.

12.

Leghemoglobin is nitrated in functional legume nodules in a tyrosine residue within the heme cavity by a nitrite/peroxide-dependent mechanism.

Sainz M, Calvo-Begueria L, Pérez-Rontomé C, Wienkoop S, Abián J, Staudinger C, Bartesaghi S, Radi R, Becana M.

Plant J. 2015 Mar;81(5):723-35. doi: 10.1111/tpj.12762.

13.

Thiol-based redox signaling in the nitrogen-fixing symbiosis.

Frendo P, Matamoros MA, Alloing G, Becana M.

Front Plant Sci. 2013 Sep 26;4:376. doi: 10.3389/fpls.2013.00376. Review.

14.

Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress.

Sainz M, Pérez-Rontomé C, Ramos J, Mulet JM, James EK, Bhattacharjee U, Petrich JW, Becana M.

Plant J. 2013 Dec;76(5):875-87. doi: 10.1111/tpj.12340. Epub 2013 Nov 8.

15.

Mitochondria are an early target of oxidative modifications in senescing legume nodules.

Matamoros MA, Fernández-García N, Wienkoop S, Loscos J, Saiz A, Becana M.

New Phytol. 2013 Feb;197(3):873-85. doi: 10.1111/nph.12049. Epub 2012 Dec 3.

16.

Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones.

Clemente MR, Bustos-Sanmamed P, Loscos J, James EK, Pérez-Rontomé C, Navascués J, Gay M, Becana M.

J Exp Bot. 2012 Jun;63(10):3923-34. doi: 10.1093/jxb/ers083. Epub 2012 Mar 22.

17.

Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules.

Navascués J, Pérez-Rontomé C, Gay M, Marcos M, Yang F, Walker FA, Desbois A, Abián J, Becana M.

Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2660-5. doi: 10.1073/pnas.1116559109. Epub 2012 Jan 30.

18.

Oxidative stress is a consequence, not a cause, of aluminum toxicity in the forage legume Lotus corniculatus.

Navascués J, Pérez-Rontomé C, Sánchez DH, Staudinger C, Wienkoop S, Rellán-Álvarez R, Becana M.

New Phytol. 2012 Feb;193(3):625-36. doi: 10.1111/j.1469-8137.2011.03978.x. Epub 2011 Dec 2.

19.

Peroxiredoxins and NADPH-dependent thioredoxin systems in the model legume Lotus japonicus.

Tovar-Méndez A, Matamoros MA, Bustos-Sanmamed P, Dietz KJ, Cejudo FJ, Rouhier N, Sato S, Tabata S, Becana M.

Plant Physiol. 2011 Jul;156(3):1535-47. doi: 10.1104/pp.111.177196. Epub 2011 May 11.

20.

Regulation of nonsymbiotic and truncated hemoglobin genes of Lotus japonicus in plant organs and in response to nitric oxide and hormones.

Bustos-Sanmamed P, Tovar-Méndez A, Crespi M, Sato S, Tabata S, Becana M.

New Phytol. 2011 Feb;189(3):765-76. doi: 10.1111/j.1469-8137.2010.03527.x. Epub 2010 Nov 12.

21.

Recent insights into antioxidant defenses of legume root nodules.

Becana M, Matamoros MA, Udvardi M, Dalton DA.

New Phytol. 2010 Dec;188(4):960-76. doi: 10.1111/j.1469-8137.2010.03512.x. Epub 2010 Oct 29. Review.

22.

Function of antioxidant enzymes and metabolites during maturation of pea fruits.

Matamoros MA, Loscos J, Dietz KJ, Aparicio-Tejo PM, Becana M.

J Exp Bot. 2010;61(1):87-97. doi: 10.1093/jxb/erp285.

23.

Immunolocalization of antioxidant enzymes in high-pressure frozen root and stem nodules of Sesbania rostrata.

Rubio MC, Becana M, Kanematsu S, Ushimaru T, James EK.

New Phytol. 2009;183(2):395-407. doi: 10.1111/j.1469-8137.2009.02866.x.

24.

Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus.

Rubio MC, Bustos-Sanmamed P, Clemente MR, Becana M.

New Phytol. 2009 Mar;181(4):851-9. doi: 10.1111/j.1469-8137.2008.02718.x.

25.

The glutathione peroxidase gene family of Lotus japonicus: characterization of genomic clones, expression analyses and immunolocalization in legumes.

Ramos J, Matamoros MA, Naya L, James EK, Rouhier N, Sato S, Tabata S, Becana M.

New Phytol. 2009;181(1):103-114. doi: 10.1111/j.1469-8137.2008.02629.x. Epub 2008 Sep 29.

26.

Functional characterization of an unusual phytochelatin synthase, LjPCS3, of Lotus japonicus.

Ramos J, Naya L, Gay M, Abián J, Becana M.

Plant Physiol. 2008 Sep;148(1):536-45. doi: 10.1104/pp.108.121715. Epub 2008 Jul 9.

27.

Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis.

López-Martín MC, Becana M, Romero LC, Gotor C.

Plant Physiol. 2008 Jun;147(2):562-72. doi: 10.1104/pp.108.117408. Epub 2008 Apr 25.

28.

Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence.

Loscos J, Matamoros MA, Becana M.

Plant Physiol. 2008 Mar;146(3):1282-92. doi: 10.1104/pp.107.114066. Epub 2008 Jan 24.

29.

The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants.

Naya L, Ladrera R, Ramos J, González EM, Arrese-Igor C, Minchin FR, Becana M.

Plant Physiol. 2007 Jun;144(2):1104-14. Epub 2007 Apr 27.

30.

Characterization of genomic clones and expression analysis of the three types of superoxide dismutases during nodule development in Lotus japonicus.

Rubio MC, Becana M, Sato S, James EK, Tabata S, Spaink HP.

Mol Plant Microbe Interact. 2007 Mar;20(3):262-75.

31.

Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with differential response to cadmium and alternatively spliced variants.

Ramos J, Clemente MR, Naya L, Loscos J, Pérez-Rontomé C, Sato S, Tabata S, Becana M.

Plant Physiol. 2007 Mar;143(3):1110-8. Epub 2007 Jan 5.

32.

Biosynthesis of ascorbic acid in legume root nodules.

Matamoros MA, Loscos J, Coronado MJ, Ramos J, Sato S, Testillano PS, Tabata S, Becana M.

Plant Physiol. 2006 Jul;141(3):1068-77. Epub 2006 Jun 9.

33.

A reassessment of substrate specificity and activation of phytochelatin synthases from model plants by physiologically relevant metals.

Loscos J, Naya L, Ramos J, Clemente MR, Matamoros MA, Becana M.

Plant Physiol. 2006 Apr;140(4):1213-21. Epub 2006 Feb 17.

34.
35.

Localization of superoxide dismutases and hydrogen peroxide in legume root nodules.

Rubio MC, James EK, Clemente MR, Bucciarelli B, Fedorova M, Vance CP, Becana M.

Mol Plant Microbe Interact. 2004 Dec;17(12):1294-305.

36.

Molecular analysis of the pathway for the synthesis of thiol tripeptides in the model legume Lotus japonicus.

Matamoros MA, Clemente MR, Sato S, Asamizu E, Tabata S, Ramos J, Moran JF, Stiller J, Gresshoff PM, Becana M.

Mol Plant Microbe Interact. 2003 Nov;16(11):1039-46.

37.

Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis.

Matamoros MA, Dalton DA, Ramos J, Clemente MR, Rubio MC, Becana M.

Plant Physiol. 2003 Oct;133(2):499-509. No abstract available.

38.

Functional characterization and expression of a cytosolic iron-superoxide dismutase from cowpea root nodules.

Moran JF, James EK, Rubio MC, Sarath G, Klucas RV, Becana M.

Plant Physiol. 2003 Oct;133(2):773-82. Epub 2003 Sep 25.

39.

Crystallization and preliminary X-ray diffraction studies of the eukaryotic iron superoxide dismutase (FeSOD) from Vigna unguiculata.

Muñoz IG, Moran JF, Becana M, Montoya G.

Acta Crystallogr D Biol Crystallogr. 2003 Jun;59(Pt 6):1070-2. Epub 2003 May 23.

PMID:
12777777
40.

Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases.

Rubio MC, González EM, Minchin FR, Webb KJ, Arrese-Igor C, Ramos J, Becana M.

Physiol Plant. 2002 Aug;115(4):531-540.

PMID:
12121459
41.

Cloning and functional characterization of a homoglutathione synthetase from pea nodules.

Iturbe-Ormaetxe I, Heras B, Matamoros MA, Ramos J, Moran JF, Becana M.

Physiol Plant. 2002 May;115(1):69-73.

PMID:
12010468
42.

Molecular cloning, functional characterization, and subcellular localization of soybean nodule dihydrolipoamide reductase.

Moran JF, Sun Z, Sarath G, Arredondo-Peter R, James EK, Becana M, Klucas RV.

Plant Physiol. 2002 Jan;128(1):300-13.

43.

The antioxidants of legume nodule mitochondria.

Iturbe-Ormaetxe I, Matamoros MA, Rubio MC, Dalton DA, Becana M.

Mol Plant Microbe Interact. 2001 Oct;14(10):1189-96.

44.
45.

Glutathione and homoglutathione synthetases of legume nodules. Cloning, expression, and subcellular localization.

Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC, Clemente MR, Brewin NJ, Becana M.

Plant Physiol. 2000 Nov;124(3):1381-92.

46.

Glutathione and homoglutathione synthesis in legume root nodules.

Matamoros MA, Moran JF, Iturbe-Ormaetxe I, Rubio MC, Becana M.

Plant Physiol. 1999 Nov;121(3):879-88.

47.

Stress-induced legume root nodule senescence. Physiological, biochemical, and structural alterations.

Matamoros MA, Baird LM, Escuredo PR, Dalton DA, Minchin FR, Iturbe-Ormaetxe I, Rubio MC, Moran JF, Gordon AJ, Becana M.

Plant Physiol. 1999 Sep;121(1):97-112.

48.

Antioxidant defenses in the peripheral cell layers of legume root nodules.

Dalton DA, Joyner SL, Becana M, Iturbe-Ormaetxe I, Chatfield JM.

Plant Physiol. 1998 Jan;116(1):37-43.

49.

N2 Fixation, Carbon Metabolism, and Oxidative Damage in Nodules of Dark-Stressed Common Bean Plants.

Gogorcena Y, Gordon AJ, Escuredo PR, Minchin FR, Witty JF, Moran JF, Becana M.

Plant Physiol. 1997 Apr;113(4):1193-1201.

50.

Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties.

Moran JF, Klucas RV, Grayer RJ, Abian J, Becana M.

Free Radic Biol Med. 1997;22(5):861-70.

PMID:
9119255

Supplemental Content

Loading ...
Support Center