Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 61

1.

Corrigendum to "Modulation of somatosensory processing by action" [Elsevier, 70 (2013) 356-362].

Shergill SS, White TP, Joyce DW, Bays PM, Wolpert DM, Frith CD.

Neuroimage. 2019 Aug 15;197:827. doi: 10.1016/j.neuroimage.2019.05.057. Epub 2019 May 29. No abstract available.

2.
3.

The effect of frontoparietal paired associative stimulation on decision-making and working memory.

Nord CL, Popa T, Smith E, Hannah R, Doñamayor N, Weidacker K, Bays PM, Rothwell J, Voon V.

Cortex. 2019 Aug;117:266-276. doi: 10.1016/j.cortex.2019.03.015. Epub 2019 Mar 28.

4.

Recall of facial expressions and simple orientations reveals competition for resources at multiple levels of the visual hierarchy.

Salmela VR, Ölander K, Muukkonen I, Bays PM.

J Vis. 2019 Mar 1;19(3):8. doi: 10.1167/19.3.8.

5.

Independent working memory resources for egocentric and allocentric spatial information.

Aagten-Murphy D, Bays PM.

PLoS Comput Biol. 2019 Feb 21;15(2):e1006563. doi: 10.1371/journal.pcbi.1006563. eCollection 2019 Feb.

6.

Flexible updating of dynamic knowledge structures.

Richter FR, Bays PM, Jeyarathnarajah P, Simons JS.

Sci Rep. 2019 Feb 19;9(1):2272. doi: 10.1038/s41598-019-39468-9.

7.

Functions of Memory Across Saccadic Eye Movements.

Aagten-Murphy D, Bays PM.

Curr Top Behav Neurosci. 2019;41:155-183. doi: 10.1007/7854_2018_66.

PMID:
30523616
8.

Internal but not external noise frees working memory resources.

Tomić I, Bays PM.

PLoS Comput Biol. 2018 Oct 15;14(10):e1006488. doi: 10.1371/journal.pcbi.1006488. eCollection 2018 Oct.

9.

The ipsilesional attention bias in right-hemisphere stroke patients as revealed by a realistic visual search task: Neuroanatomical correlates and functional relevance.

Machner B, Könemund I, von der Gablentz J, Bays PM, Sprenger A.

Neuropsychology. 2018 Oct;32(7):850-865. doi: 10.1037/neu0000493. Erratum in: Neuropsychology. 2019 May;33(4):595.

10.

New perspectives on binding in visual working memory.

Schneegans S, Bays PM.

Br J Psychol. 2019 May;110(2):207-244. doi: 10.1111/bjop.12345. Epub 2018 Oct 8. Review.

PMID:
30295318
11.

Efficient Coding in Visual Working Memory Accounts for Stimulus-Specific Variations in Recall.

Taylor R, Bays PM.

J Neurosci. 2018 Aug 8;38(32):7132-7142. doi: 10.1523/JNEUROSCI.1018-18.2018. Epub 2018 Jul 13.

12.

Failure of self-consistency in the discrete resource model of visual working memory.

Bays PM.

Cogn Psychol. 2018 Sep;105:1-8. doi: 10.1016/j.cogpsych.2018.05.002. Epub 2018 Jun 3.

13.

Drift in Neural Population Activity Causes Working Memory to Deteriorate Over Time.

Schneegans S, Bays PM.

J Neurosci. 2018 May 23;38(21):4859-4869. doi: 10.1523/JNEUROSCI.3440-17.2018. Epub 2018 Apr 27.

14.

Visual Working Memory Is Independent of the Cortical Spacing Between Memoranda.

Harrison WJ, Bays PM.

J Neurosci. 2018 Mar 21;38(12):3116-3123. doi: 10.1523/JNEUROSCI.2645-17.2017. Epub 2018 Feb 19.

15.

Reassessing the Evidence for Capacity Limits in Neural Signals Related to Working Memory.

Bays PM.

Cereb Cortex. 2018 Apr 1;28(4):1432-1438. doi: 10.1093/cercor/bhx351.

16.

A neural model of retrospective attention in visual working memory.

Bays PM, Taylor R.

Cogn Psychol. 2018 Feb;100:43-52. doi: 10.1016/j.cogpsych.2017.12.001. Epub 2017 Dec 19.

17.

Restoration of fMRI Decodability Does Not Imply Latent Working Memory States.

Schneegans S, Bays PM.

J Cogn Neurosci. 2017 Dec;29(12):1977-1994. doi: 10.1162/jocn_a_01180. Epub 2017 Aug 18.

18.

Automatic and intentional influences on saccade landing.

Aagten-Murphy D, Bays PM.

J Neurophysiol. 2017 Aug 1;118(2):1105-1122. doi: 10.1152/jn.00141.2017. Epub 2017 May 24.

19.

Neural Architecture for Feature Binding in Visual Working Memory.

Schneegans S, Bays PM.

J Neurosci. 2017 Apr 5;37(14):3913-3925. doi: 10.1523/JNEUROSCI.3493-16.2017. Epub 2017 Mar 7.

20.

Fidelity of the representation of value in decision-making.

Bays PM, Dowding BA.

PLoS Comput Biol. 2017 Mar 1;13(3):e1005405. doi: 10.1371/journal.pcbi.1005405. eCollection 2017 Mar.

21.

Reduced Hippocampal Functional Connectivity During Episodic Memory Retrieval in Autism.

Cooper RA, Richter FR, Bays PM, Plaisted-Grant KC, Baron-Cohen S, Simons JS.

Cereb Cortex. 2017 Feb 1;27(2):888-902. doi: 10.1093/cercor/bhw417.

22.

Distinct neural mechanisms underlie the success, precision, and vividness of episodic memory.

Richter FR, Cooper RA, Bays PM, Simons JS.

Elife. 2016 Oct 25;5. pii: e18260. doi: 10.7554/eLife.18260.

23.

A signature of neural coding at human perceptual limits.

Bays PM.

J Vis. 2016 Sep 1;16(11):4. doi: 10.1167/16.11.4.

24.

No fixed item limit in visuospatial working memory.

Schneegans S, Bays PM.

Cortex. 2016 Oct;83:181-93. doi: 10.1016/j.cortex.2016.07.021. Epub 2016 Aug 6.

25.

Competition between movement plans increases motor variability: evidence of a shared resource for movement planning.

Oostwoud Wijdenes L, Ivry RB, Bays PM.

J Neurophysiol. 2016 Sep 1;116(3):1295-303. doi: 10.1152/jn.00113.2016. Epub 2016 Jun 29.

26.

Evaluating and excluding swap errors in analogue tests of working memory.

Bays PM.

Sci Rep. 2016 Jan 13;6:19203. doi: 10.1038/srep19203.

27.

Evidence for Optimal Integration of Visual Feature Representations across Saccades.

Oostwoud Wijdenes L, Marshall L, Bays PM.

J Neurosci. 2015 Jul 15;35(28):10146-53. doi: 10.1523/JNEUROSCI.1040-15.2015.

28.

Spikes not slots: noise in neural populations limits working memory.

Bays PM.

Trends Cogn Sci. 2015 Aug;19(8):431-8. doi: 10.1016/j.tics.2015.06.004. Epub 2015 Jul 6.

PMID:
26160026
29.

Eye-Search: A web-based therapy that improves visual search in hemianopia.

Ong YH, Jacquin-Courtois S, Gorgoraptis N, Bays PM, Husain M, Leff AP.

Ann Clin Transl Neurol. 2015 Jan;2(1):74-8. doi: 10.1002/acn3.154. Epub 2014 Nov 27.

30.

A probabilistic palimpsest model of visual short-term memory.

Matthey L, Bays PM, Dayan P.

PLoS Comput Biol. 2015 Jan 22;11(1):e1004003. doi: 10.1371/journal.pcbi.1004003. eCollection 2015 Jan.

31.

Noise in neural populations accounts for errors in working memory.

Bays PM.

J Neurosci. 2014 Mar 5;34(10):3632-45. doi: 10.1523/JNEUROSCI.3204-13.2014.

32.

Changing concepts of working memory.

Ma WJ, Husain M, Bays PM.

Nat Neurosci. 2014 Mar;17(3):347-56. doi: 10.1038/nn.3655. Epub 2014 Feb 25. Review.

33.

Working memory retrieval as a decision process.

Pearson B, Raskevicius J, Bays PM, Pertzov Y, Husain M.

J Vis. 2014 Feb 3;14(2). pii: 2. doi: 10.1167/14.2.2.

34.

Functional magnetic resonance imaging of impaired sensory prediction in schizophrenia.

Shergill SS, White TP, Joyce DW, Bays PM, Wolpert DM, Frith CD.

JAMA Psychiatry. 2014 Jan;71(1):28-35. doi: 10.1001/jamapsychiatry.2013.2974.

PMID:
24196370
35.

Age-related decline of precision and binding in visual working memory.

Peich MC, Husain M, Bays PM.

Psychol Aging. 2013 Sep;28(3):729-43. doi: 10.1037/a0033236. Epub 2013 Aug 26.

36.

Obligatory encoding of task-irrelevant features depletes working memory resources.

Marshall L, Bays PM.

J Vis. 2013 Feb 18;13(2). pii: 21. doi: 10.1167/13.2.21.

37.

Modulation of somatosensory processing by action.

Shergill SS, White TP, Joyce DW, Bays PM, Wolpert DM, Frith CD.

Neuroimage. 2013 Apr 15;70:356-62. doi: 10.1016/j.neuroimage.2012.12.043. Epub 2012 Dec 28. Erratum in: Neuroimage. 2019 Aug 15;197:827.

38.

Rapid forgetting prevented by retrospective attention cues.

Pertzov Y, Bays PM, Joseph S, Husain M.

J Exp Psychol Hum Percept Perform. 2013 Oct;39(5):1224-31. doi: 10.1037/a0030947. Epub 2012 Dec 17.

39.

Active inhibition and memory promote exploration and search of natural scenes.

Bays PM, Husain M.

J Vis. 2012 Jan 1;12(8). pii: 8. doi: 10.1167/12.8.8.

40.

Development of visual working memory precision in childhood.

Burnett Heyes S, Zokaei N, van der Staaij I, Bays PM, Husain M.

Dev Sci. 2012 Jul;15(4):528-39. doi: 10.1111/j.1467-7687.2012.01148.x. Epub 2012 Apr 21.

41.

Impulsivity and rapid decision-making for reward.

Burnett Heyes S, Adam RJ, Urner M, van der Leer L, Bahrami B, Bays PM, Husain M.

Front Psychol. 2012 May 22;3:153. doi: 10.3389/fpsyg.2012.00153. eCollection 2012.

42.

Rapid compensation of visual search strategy in patients with chronic visual field defects.

Jacquin-Courtois S, Bays PM, Salemme R, Leff AP, Husain M.

Cortex. 2013 Apr;49(4):994-1000. doi: 10.1016/j.cortex.2012.03.025. Epub 2012 Apr 20.

43.

Rapid decision-making under risk.

Adam R, Bays PM, Husain M.

Cogn Neurosci. 2012;3(1):52-61. doi: 10.1080/17588928.2011.613988. Epub 2011 Oct 12.

44.

Precision of working memory for visual motion sequences and transparent motion surfaces.

Zokaei N, Gorgoraptis N, Bahrami B, Bays PM, Husain M.

J Vis. 2011 Dec 1;11(14). pii: 2. doi: 10.1167/11.14.2.

45.

Temporal dynamics of encoding, storage, and reallocation of visual working memory.

Bays PM, Gorgoraptis N, Wee N, Marshall L, Husain M.

J Vis. 2011 Sep 12;11(10). pii: 6. doi: 10.1167/11.10.6.

46.

Dynamic updating of working memory resources for visual objects.

Gorgoraptis N, Catalao RF, Bays PM, Husain M.

J Neurosci. 2011 Jun 8;31(23):8502-11. doi: 10.1523/JNEUROSCI.0208-11.2011.

47.

Storage and binding of object features in visual working memory.

Bays PM, Wu EY, Husain M.

Neuropsychologia. 2011 May;49(6):1622-31. doi: 10.1016/j.neuropsychologia.2010.12.023. Epub 2010 Dec 21.

48.

Integration of goal- and stimulus-related visual signals revealed by damage to human parietal cortex.

Bays PM, Singh-Curry V, Gorgoraptis N, Driver J, Husain M.

J Neurosci. 2010 Apr 28;30(17):5968-78. doi: 10.1523/JNEUROSCI.0997-10.2010.

49.

The precision of visual working memory is set by allocation of a shared resource.

Bays PM, Catalao RF, Husain M.

J Vis. 2009 Sep 9;9(10):7.1-11. doi: 10.1167/9.10.7.

50.

Supplemental Content

Support Center