Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 49

1.

Residues of acidic chitinase cause chitinolytic activity degrading chitosan in porcine pepsin preparations.

Tabata E, Wakita S, Kashimura A, Sugahara Y, Matoska V, Bauer PO, Oyama F.

Sci Rep. 2019 Oct 30;9(1):15609. doi: 10.1038/s41598-019-52136-2.

2.

Neurons Induced From Fibroblasts of c9ALS/FTD Patients Reproduce the Pathology Seen in the Central Nervous System.

Bauer PO, Dunmore JH, Sasaguri H, Matoska V.

Front Neurosci. 2019 Sep 6;13:935. doi: 10.3389/fnins.2019.00935. eCollection 2019.

3.

Direct comparison of chitinolytic properties and determination of combinatory effects of mouse chitotriosidase and acidic mammalian chitinase.

Kimura M, Umeyama T, Wakita S, Okawa K, Sakaguchi M, Matoska V, Bauer PO, Oyama F.

Int J Biol Macromol. 2019 Aug 1;134:882-890. doi: 10.1016/j.ijbiomac.2019.05.097. Epub 2019 May 17.

4.

High expression of acidic chitinase and chitin digestibility in the stomach of common marmoset (Callithrix jacchus), an insectivorous nonhuman primate.

Tabata E, Kashimura A, Uehara M, Wakita S, Sakaguchi M, Sugahara Y, Yurimoto T, Sasaki E, Matoska V, Bauer PO, Oyama F.

Sci Rep. 2019 Jan 17;9(1):159. doi: 10.1038/s41598-018-36477-y.

5.

Chitinase mRNA Levels Determined by QPCR in Crab-Eating Monkey (Macaca fascicularis) Tissues: Species-Specific Expression of Acidic Mammalian Chitinase and Chitotriosidase.

Uehara M, Tabata E, Ishii K, Sawa A, Ohno M, Sakaguchi M, Matoska V, Bauer PO, Oyama F.

Genes (Basel). 2018 May 9;9(5). pii: E244. doi: 10.3390/genes9050244.

6.

Acidic Chitinase-Chitin Complex Is Dissociated in a Competitive Manner by Acetic Acid: Purification of Natural Enzyme for Supplementation Purposes.

Tabata E, Kashimura A, Wakita S, Sakaguchi M, Sugahara Y, Imamura Y, Shimizu H, Matoska V, Bauer PO, Oyama F.

Int J Mol Sci. 2018 Jan 25;19(2). pii: E362. doi: 10.3390/ijms19020362.

7.

Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs.

Tabata E, Kashimura A, Kikuchi A, Masuda H, Miyahara R, Hiruma Y, Wakita S, Ohno M, Sakaguchi M, Sugahara Y, Matoska V, Bauer PO, Oyama F.

Sci Rep. 2018 Jan 23;8(1):1461. doi: 10.1038/s41598-018-19940-8.

8.

Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources.

Tabata E, Kashimura A, Wakita S, Ohno M, Sakaguchi M, Sugahara Y, Imamura Y, Seki S, Ueda H, Matoska V, Bauer PO, Oyama F.

Sci Rep. 2017 Oct 11;7(1):12963. doi: 10.1038/s41598-017-13526-6.

9.

Mouse acidic mammalian chitinase exhibits transglycosylation activity at somatic tissue pH.

Wakita S, Kobayashi S, Kimura M, Kashimura A, Honda S, Sakaguchi M, Sugahara Y, Kamaya M, Matoska V, Bauer PO, Oyama F.

FEBS Lett. 2017 Oct;591(20):3310-3318. doi: 10.1002/1873-3468.12798. Epub 2017 Aug 30.

10.

Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry.

Tabata E, Kashimura A, Wakita S, Ohno M, Sakaguchi M, Sugahara Y, Kino Y, Matoska V, Bauer PO, Oyama F.

Sci Rep. 2017 Jul 27;7(1):6662. doi: 10.1038/s41598-017-07146-3.

11.

Improved fluorescent labeling of chitin oligomers: Chitinolytic properties of acidic mammalian chitinase under somatic tissue pH conditions.

Wakita S, Kimura M, Kato N, Kashimura A, Kobayashi S, Kanayama N, Ohno M, Honda S, Sakaguchi M, Sugahara Y, Bauer PO, Oyama F.

Carbohydr Polym. 2017 May 15;164:145-153. doi: 10.1016/j.carbpol.2017.01.095. Epub 2017 Jan 31.

12.

Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system.

Ohno M, Kimura M, Miyazaki H, Okawa K, Onuki R, Nemoto C, Tabata E, Wakita S, Kashimura A, Sakaguchi M, Sugahara Y, Nukina N, Bauer PO, Oyama F.

Sci Rep. 2016 Nov 24;6:37756. doi: 10.1038/srep37756.

13.

Functional Properties of Mouse Chitotriosidase Expressed in the Periplasmic Space of Escherichia coli.

Kimura M, Wakita S, Ishikawa K, Sekine K, Yoshikawa S, Sato A, Okawa K, Kashimura A, Sakaguchi M, Sugahara Y, Yamanaka D, Ohno N, Bauer PO, Oyama F.

PLoS One. 2016 Oct 7;11(10):e0164367. doi: 10.1371/journal.pone.0164367. eCollection 2016.

14.

Loss and Gain of Human Acidic Mammalian Chitinase Activity by Nonsynonymous SNPs.

Okawa K, Ohno M, Kashimura A, Kimura M, Kobayashi Y, Sakaguchi M, Sugahara Y, Kamaya M, Kino Y, Bauer PO, Oyama F.

Mol Biol Evol. 2016 Dec;33(12):3183-3193. Epub 2016 Oct 4.

15.

The extreme N-terminus of TDP-43 mediates the cytoplasmic aggregation of TDP-43 and associated toxicity in vivo.

Sasaguri H, Chew J, Xu YF, Gendron TF, Garrett A, Lee CW, Jansen-West K, Bauer PO, Perkerson EA, Tong J, Stetler C, Zhang YJ.

Brain Res. 2016 Sep 15;1647:57-64. doi: 10.1016/j.brainres.2016.04.069. Epub 2016 May 4. Review.

16.

Methylation of C9orf72 expansion reduces RNA foci formation and dipeptide-repeat proteins expression in cells.

Bauer PO.

Neurosci Lett. 2016 Jan 26;612:204-209. doi: 10.1016/j.neulet.2015.12.018. Epub 2015 Dec 12.

PMID:
26690922
17.

(Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation.

Fiesel FC, Ando M, Hudec R, Hill AR, Castanedes-Casey M, Caulfield TR, Moussaud-Lamodière EL, Stankowski JN, Bauer PO, Lorenzo-Betancor O, Ferrer I, Arbelo JM, Siuda J, Chen L, Dawson VL, Dawson TM, Wszolek ZK, Ross OA, Dickson DW, Springer W.

EMBO Rep. 2015 Sep;16(9):1114-30. doi: 10.15252/embr.201540514. Epub 2015 Jul 10.

18.

Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits.

Chew J, Gendron TF, Prudencio M, Sasaguri H, Zhang YJ, Castanedes-Casey M, Lee CW, Jansen-West K, Kurti A, Murray ME, Bieniek KF, Bauer PO, Whitelaw EC, Rousseau L, Stankowski JN, Stetler C, Daughrity LM, Perkerson EA, Desaro P, Johnston A, Overstreet K, Edbauer D, Rademakers R, Boylan KB, Dickson DW, Fryer JD, Petrucelli L.

Science. 2015 Jun 5;348(6239):1151-4. doi: 10.1126/science.aaa9344. Epub 2015 May 14.

19.

Quantitative Real-Time PCR Analysis of YKL-40 and Its Comparison with Mammalian Chitinase mRNAs in Normal Human Tissues Using a Single Standard DNA.

Ohno M, Bauer PO, Kida Y, Sakaguchi M, Sugahara Y, Oyama F.

Int J Mol Sci. 2015 Apr 30;16(5):9922-35. doi: 10.3390/ijms16059922.

20.

Functional properties of the catalytic domain of mouse acidic mammalian chitinase expressed in Escherichia coli.

Kashimura A, Kimura M, Okawa K, Suzuki H, Ukita A, Wakita S, Okazaki K, Ohno M, Bauer PO, Sakaguchi M, Sugahara Y, Oyama F.

Int J Mol Sci. 2015 Feb 13;16(2):4028-42. doi: 10.3390/ijms16024028.

21.

Discovery of a Biomarker and Lead Small Molecules to Target r(GGGGCC)-Associated Defects in c9FTD/ALS.

Su Z, Zhang Y, Gendron TF, Bauer PO, Chew J, Yang WY, Fostvedt E, Jansen-West K, Belzil VV, Desaro P, Johnston A, Overstreet K, Oh SY, Todd PK, Berry JD, Cudkowicz ME, Boeve BF, Dickson D, Floeter MK, Traynor BJ, Morelli C, Ratti A, Silani V, Rademakers R, Brown RH, Rothstein JD, Boylan KB, Petrucelli L, Disney MD.

Neuron. 2014 Oct 1;84(1):239. doi: 10.1016/j.neuron.2014.09.019. Epub 2014 Oct 1. No abstract available.

22.

Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS.

Su Z, Zhang Y, Gendron TF, Bauer PO, Chew J, Yang WY, Fostvedt E, Jansen-West K, Belzil VV, Desaro P, Johnston A, Overstreet K, Oh SY, Todd PK, Berry JD, Cudkowicz ME, Boeve BF, Dickson D, Floeter MK, Traynor BJ, Morelli C, Ratti A, Silani V, Rademakers R, Brown RH, Rothstein JD, Boylan KB, Petrucelli L, Disney MD.

Neuron. 2014 Sep 3;83(5):1043-50. doi: 10.1016/j.neuron.2014.07.041. Epub 2014 Aug 14. Erratum in: Neuron. 2014 Oct 1;84(1):239.

23.

Large-scale RNA interference screening in mammalian cells identifies novel regulators of mutant huntingtin aggregation.

Yamanaka T, Wong HK, Tosaki A, Bauer PO, Wada K, Kurosawa M, Shimogori T, Hattori N, Nukina N.

PLoS One. 2014 Apr 4;9(4):e93891. doi: 10.1371/journal.pone.0093891. eCollection 2014.

24.

A novel form of ciliopathy underlies hyperphagia and obesity in Ankrd26 knockout mice.

Acs P, Bauer PO, Mayer B, Bera T, Macallister R, Mezey E, Pastan I.

Brain Struct Funct. 2015;220(3):1511-28. doi: 10.1007/s00429-014-0741-9. Epub 2014 Mar 16.

25.

Characterization of DNA hypermethylation in the cerebellum of c9FTD/ALS patients.

Belzil VV, Bauer PO, Gendron TF, Murray ME, Dickson D, Petrucelli L.

Brain Res. 2014 Oct 10;1584:15-21. doi: 10.1016/j.brainres.2014.02.015. Epub 2014 Feb 12.

26.

Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood.

Belzil VV, Bauer PO, Prudencio M, Gendron TF, Stetler CT, Yan IK, Pregent L, Daughrity L, Baker MC, Rademakers R, Boylan K, Patel TC, Dickson DW, Petrucelli L.

Acta Neuropathol. 2013 Dec;126(6):895-905. doi: 10.1007/s00401-013-1199-1. Epub 2013 Oct 29.

27.

Targeted manipulation of the sortilin-progranulin axis rescues progranulin haploinsufficiency.

Lee WC, Almeida S, Prudencio M, Caulfield TR, Zhang YJ, Tay WM, Bauer PO, Chew J, Sasaguri H, Jansen-West KR, Gendron TF, Stetler CT, Finch N, Mackenzie IR, Rademakers R, Gao FB, Petrucelli L.

Hum Mol Genet. 2014 Mar 15;23(6):1467-78. doi: 10.1093/hmg/ddt534. Epub 2013 Oct 26.

28.

2-Aminoethyl diphenylborinate (2-APB) analogues: regulation of Ca2+ signaling.

Ozaki S, Suzuki AZ, Bauer PO, Ebisui E, Mikoshiba K.

Biochem Biophys Res Commun. 2013 Nov 15;441(2):286-90. doi: 10.1016/j.bbrc.2013.08.102. Epub 2013 Sep 11.

PMID:
24036266
29.

Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study.

van Blitterswijk M, DeJesus-Hernandez M, Niemantsverdriet E, Murray ME, Heckman MG, Diehl NN, Brown PH, Baker MC, Finch NA, Bauer PO, Serrano G, Beach TG, Josephs KA, Knopman DS, Petersen RC, Boeve BF, Graff-Radford NR, Boylan KB, Petrucelli L, Dickson DW, Rademakers R.

Lancet Neurol. 2013 Oct;12(10):978-88. doi: 10.1016/S1474-4422(13)70210-2. Epub 2013 Sep 5.

30.

De novo mutations in ataxin-2 gene and ALS risk.

Laffita-Mesa JM, Rodríguez Pupo JM, Moreno Sera R, Vázquez Mojena Y, Kourí V, Laguna-Salvia L, Martínez-Godales M, Valdevila Figueira JA, Bauer PO, Rodríguez-Labrada R, González Zaldívar Y, Paucar M, Svenningsson P, Velázquez Pérez L.

PLoS One. 2013 Aug 6;8(8):e70560. doi: 10.1371/journal.pone.0070560. Print 2013.

31.

Large normal alleles and SCA2 prevalence: lessons from a nationwide study and analysis of the literature.

Laffita-Mesa JM, Almaguer-Mederos LE, Kourí V, Bauer PO, Vázquez-Mojena Y, Cruz Mariño T, Velázquez-Pérez L.

Clin Genet. 2014 Jul;86(1):96-8. doi: 10.1111/cge.12221. Epub 2013 Jul 19. No abstract available.

PMID:
23865735
32.

Genome-wide associations of signaling pathways in glioblastoma multiforme.

Wuchty S, Vazquez A, Bozdag S, Bauer PO.

BMC Med Genomics. 2013 Mar 28;6:11. doi: 10.1186/1755-8794-6-11.

33.

Important miRs of pathways in different tumor types.

Wuchty S, Arjona D, Bauer PO.

PLoS Comput Biol. 2013;9(1):e1002883. doi: 10.1371/journal.pcbi.1002883. Epub 2013 Jan 24.

34.

Gliomagenesis arising from Pten- and Ink4a/Arf-deficient neural progenitor cells is mediated by the p53-Fbxw7/Cdc4 pathway, which controls c-Myc.

Kim HS, Woolard K, Lai C, Bauer PO, Maric D, Song H, Li A, Kotliarova S, Zhang W, Fine HA.

Cancer Res. 2012 Nov 15;72(22):6065-75. doi: 10.1158/0008-5472.CAN-12-2594. Epub 2012 Sep 17.

35.

ROCK-phosphorylated vimentin modifies mutant huntingtin aggregation via sequestration of IRBIT.

Bauer PO, Hudec R, Goswami A, Kurosawa M, Matsumoto G, Mikoshiba K, Nukina N.

Mol Neurodegener. 2012 Aug 28;7:43. doi: 10.1186/1750-1326-7-43.

36.

Involvement of microRNA families in cancer.

Wuchty S, Arjona D, Bozdag S, Bauer PO.

Nucleic Acids Res. 2012 Sep 1;40(17):8219-26. Epub 2012 Jun 28.

37.

Genetic ablation and chemical inhibition of IP3R1 reduce mutant huntingtin aggregation.

Bauer PO, Hudec R, Ozaki S, Okuno M, Ebisui E, Mikoshiba K, Nukina N.

Biochem Biophys Res Commun. 2011 Dec 9;416(1-2):13-7. doi: 10.1016/j.bbrc.2011.10.096. Epub 2011 Oct 28.

PMID:
22056561
38.

Epigenetics DNA methylation in the core ataxin-2 gene promoter: novel physiological and pathological implications.

Laffita-Mesa JM, Bauer PO, Kourí V, Peña Serrano L, Roskams J, Almaguer Gotay D, Montes Brown JC, Martínez Rodríguez PA, González-Zaldívar Y, Almaguer Mederos L, Cuello-Almarales D, Aguiar Santiago J.

Hum Genet. 2012 Apr;131(4):625-38. doi: 10.1007/s00439-011-1101-y. Epub 2011 Oct 30.

PMID:
22037902
39.

Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein.

Bauer PO, Goswami A, Wong HK, Okuno M, Kurosawa M, Yamada M, Miyazaki H, Matsumoto G, Kino Y, Nagai Y, Nukina N.

Nat Biotechnol. 2010 Mar;28(3):256-63. doi: 10.1038/nbt.1608. Epub 2010 Feb 28.

PMID:
20190739
40.

The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies.

Bauer PO, Nukina N.

J Neurochem. 2009 Sep;110(6):1737-65. doi: 10.1111/j.1471-4159.2009.06302.x. Epub 2009 Jul 23. Review.

41.
42.

Inhibition of Rho kinases enhances the degradation of mutant huntingtin.

Bauer PO, Wong HK, Oyama F, Goswami A, Okuno M, Kino Y, Miyazaki H, Nukina N.

J Biol Chem. 2009 May 8;284(19):13153-64. doi: 10.1074/jbc.M809229200. Epub 2009 Mar 11.

43.

Blocking acid-sensing ion channel 1 alleviates Huntington's disease pathology via an ubiquitin-proteasome system-dependent mechanism.

Wong HK, Bauer PO, Kurosawa M, Goswami A, Washizu C, Machida Y, Tosaki A, Yamada M, Knöpfel T, Nakamura T, Nukina N.

Hum Mol Genet. 2008 Oct 15;17(20):3223-35. doi: 10.1093/hmg/ddn218. Epub 2008 Jul 24.

PMID:
18658163
44.

RNA-binding protein TLS is a major nuclear aggregate-interacting protein in huntingtin exon 1 with expanded polyglutamine-expressing cells.

Doi H, Okamura K, Bauer PO, Furukawa Y, Shimizu H, Kurosawa M, Machida Y, Miyazaki H, Mitsui K, Kuroiwa Y, Nukina N.

J Biol Chem. 2008 Mar 7;283(10):6489-500. doi: 10.1074/jbc.M705306200. Epub 2007 Dec 31.

45.

Expanded polyglutamines impair synaptic transmission and ubiquitin-proteasome system in Caenorhabditis elegans.

Khan LA, Bauer PO, Miyazaki H, Lindenberg KS, Landwehrmeyer BG, Nukina N.

J Neurochem. 2006 Jul;98(2):576-87.

46.

Absence of spinocerebellar ataxia type 3/Machado-Joseph disease within ataxic patients in the Czech population.

Bauer PO, Zumrova A, Matoska V, Marikova T, Krilova S, Boday A, Singh B, Goetz P.

Eur J Neurol. 2005 Nov;12(11):851-7.

PMID:
16241973
47.

Genotype/phenotype correlation in a SCA1 family: anticipation without CAG expansion.

Bauer PO, Matoska V, Zumrova A, Boday A, Doi H, Marikova T, Goetz P.

J Appl Genet. 2005;46(3):325-8.

PMID:
16110192
48.

Fluorescent multiplex PCR--fast method for autosomal dominant spinocerebellar ataxias screening.

Bauer PO, Kotliarova SE, Matoska V, Musova Z, Hedvicakova P, Boday A, Tomek A, Nukina N, Goetz P.

Genetika. 2005 Jun;41(6):830-7.

PMID:
16080609
49.

Can ataxin-2 be down-regulated by allele-specific de novo DNA methylation in SCA2 patients?

Bauer PO, Zumrova A, Matoska V, Mitsui K, Goetz P.

Med Hypotheses. 2004;63(6):1018-23.

PMID:
15504570

Supplemental Content

Loading ...
Support Center