Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 77

1.

Ecological interactions are a primary driver of population dynamics in wine yeast microbiota during fermentation.

Bagheri B, Bauer FF, Cardinali G, Setati ME.

Sci Rep. 2020 Mar 18;10(1):4911. doi: 10.1038/s41598-020-61690-z.

2.

Investigation of olfactory interactions of low levels of five off-flavour causing compounds in a red wine matrix.

McKay M, Bauer FF, Panzeri V, Buica A.

Food Res Int. 2020 Feb;128:108878. doi: 10.1016/j.foodres.2019.108878. Epub 2019 Dec 16.

PMID:
31955778
3.

Peer pressure: evolutionary responses to biotic pressures in wine yeasts.

Conacher CG, Rossouw D, Bauer FFB.

FEMS Yeast Res. 2019 Nov 1;19(7). pii: foz072. doi: 10.1093/femsyr/foz072.

PMID:
31626300
4.

A giant exoplanet orbiting a very-low-mass star challenges planet formation models.

Morales JC, Mustill AJ, Ribas I, Davies MB, Reiners A, Bauer FF, Kossakowski D, Herrero E, Rodríguez E, López-González MJ, Rodríguez-López C, Béjar VJS, González-Cuesta L, Luque R, Pallé E, Perger M, Baroch D, Johansen A, Klahr H, Mordasini C, Anglada-Escudé G, Caballero JA, Cortés-Contreras M, Dreizler S, Lafarga M, Nagel E, Passegger VM, Reffert S, Rosich A, Schweitzer A, Tal-Or L, Trifonov T, Zechmeister M, Quirrenbach A, Amado PJ, Guenther EW, Hagen HJ, Henning T, Jeffers SV, Kaminski A, Kürster M, Montes D, Seifert W, Abellán FJ, Abril M, Aceituno J, Aceituno FJ, Alonso-Floriano FJ, Ammler-von Eiff M, Antona R, Arroyo-Torres B, Azzaro M, Barrado D, Becerril-Jarque S, Benítez D, Berdiñas ZM, Bergond G, Brinkmöller M, Del Burgo C, Burn R, Calvo-Ortega R, Cano J, Cárdenas MC, Guillén CC, Carro J, Casal E, Casanova V, Casasayas-Barris N, Chaturvedi P, Cifuentes C, Claret A, Colomé J, Czesla S, Díez-Alonso E, Dorda R, Emsenhuber A, Fernández M, Fernández-Martín A, Ferro IM, Fuhrmeister B, Galadí-Enríquez D, Cava IG, Vargas MLG, Garcia-Piquer A, Gesa L, González-Álvarez E, Hernández JIG, González-Peinado R, Guàrdia J, Guijarro A, de Guindos E, Hatzes AP, Hauschildt PH, Hedrosa RP, Hermelo I, Arabi RH, Otero FH, Hintz D, Holgado G, Huber A, Huke P, Johnson EN, de Juan E, Kehr M, Kemmer J, Kim M, Klüter J, Klutsch A, Labarga F, Labiche N, Lalitha S, Lampón M, Lara LM, Launhardt R, Lázaro FJ, Lizon JL, Llamas M, Lodieu N, López Del Fresno M, Salas JFL, López-Santiago J, Madinabeitia HM, Mall U, Mancini L, Mandel H, Marfil E, Molina JAM, Martín EL, Martín-Fernández P, Martín-Ruiz S, Martínez-Rodríguez H, Marvin CJ, Mirabet E, Moya A, Naranjo V, Nelson RP, Nortmann L, Nowak G, Ofir A, Pascual J, Pavlov A, Pedraz S, Medialdea DP, Pérez-Calpena A, Perryman MAC, Rabaza O, Ballesta AR, Rebolo R, Redondo P, Rix HW, Rodler F, Trinidad AR, Sabotta S, Sadegi S, Salz M, Sánchez-Blanco E, Carrasco MAS, Sánchez-López A, Sanz-Forcada J, Sarkis P, Sarmiento LF, Schäfer S, Schlecker M, Schmitt JHMM, Schöfer P, Solano E, Sota A, Stahl O, Stock S, Stuber T, Stürmer J, Suárez JC, Tabernero HM, Tulloch SM, Veredas G, Vico-Linares JI, Vilardell F, Wagner K, Winkler J, Wolthoff V, Yan F, Osorio MRZ.

Science. 2019 Sep 27;365(6460):1441-1445. doi: 10.1126/science.aax3198.

PMID:
31604272
5.

A comparison of the nitrogen metabolic networks of Kluyveromyces marxianus and Saccharomyces cerevisiae.

Rollero S, Bloem A, Ortiz-Julien A, Bauer FF, Camarasa C, Divol B.

Environ Microbiol. 2019 Nov;21(11):4076-4091. doi: 10.1111/1462-2920.14756. Epub 2019 Aug 6.

PMID:
31336027
6.

Corrigendum: Investigating the Effect of Selected Non-Saccharomyces Species on Wine Ecosystem Function and Major Volatiles.

Bagheri B, Zambelli P, Vigentini I, Bauer FF, Setati ME.

Front Bioeng Biotechnol. 2019 Jun 12;7:140. doi: 10.3389/fbioe.2019.00140. eCollection 2019.

7.

Nutrient Exchange of Carbon and Nitrogen Promotes the Formation of Stable Mutualisms Between Chlorella sorokiniana and Saccharomyces cerevisiae Under Engineered Synthetic Growth Conditions.

Naidoo RK, Simpson ZF, Oosthuizen JR, Bauer FF.

Front Microbiol. 2019 Mar 26;10:609. doi: 10.3389/fmicb.2019.00609. eCollection 2019.

8.

RNA-seq based transcriptional analysis of Saccharomyces cerevisiae and Lachancea thermotolerans in mixed-culture fermentations under anaerobic conditions.

Shekhawat K, Patterton H, Bauer FF, Setati ME.

BMC Genomics. 2019 Feb 18;20(1):145. doi: 10.1186/s12864-019-5511-x.

9.

The utilisation of nitrogenous compounds by commercial non-Saccharomyces yeasts associated with wine.

Prior KJ, Bauer FF, Divol B.

Food Microbiol. 2019 Jun;79:75-84. doi: 10.1016/j.fm.2018.12.002. Epub 2018 Dec 3.

PMID:
30621878
10.

Ground-based detection of an extended helium atmosphere in the Saturn-mass exoplanet WASP-69b.

Nortmann L, Pallé E, Salz M, Sanz-Forcada J, Nagel E, Alonso-Floriano FJ, Czesla S, Yan F, Chen G, Snellen IAG, Zechmeister M, Schmitt JHMM, López-Puertas M, Casasayas-Barris N, Bauer FF, Amado PJ, Caballero JA, Dreizler S, Henning T, Lampón M, Montes D, Molaverdikhani K, Quirrenbach A, Reiners A, Ribas I, Sánchez-López A, Schneider PC, Zapatero Osorio MR.

Science. 2018 Dec 21;362(6421):1388-1391. doi: 10.1126/science.aat5348. Epub 2018 Dec 6.

PMID:
30523081
11.

Chitinases and thaumatin-like proteins in Sauvignon Blanc and Chardonnay musts during alcoholic fermentation.

Ndlovu T, Buica A, Bauer FF.

Food Microbiol. 2019 Apr;78:201-210. doi: 10.1016/j.fm.2018.10.018. Epub 2018 Nov 1.

PMID:
30497604
12.

Investigating the Effect of Selected Non-Saccharomyces Species on Wine Ecosystem Function and Major Volatiles.

Bagheri B, Zambelli P, Vigentini I, Bauer FF, Setati ME.

Front Bioeng Biotechnol. 2018 Nov 13;6:169. doi: 10.3389/fbioe.2018.00169. eCollection 2018. Erratum in: Front Bioeng Biotechnol. 2019 Jun 12;7:140.

13.

Testing the Sensitivity of Potential Panelists for Wine Taint Compounds Using a Simplified Sensory Strategy.

McKay M, Bauer FF, Panzeri V, Buica A.

Foods. 2018 Oct 24;7(11). pii: E176. doi: 10.3390/foods7110176.

14.

Modifying Saccharomyces cerevisiae Adhesion Properties Regulates Yeast Ecosystem Dynamics.

Rossouw D, Meiring SP, Bauer FF.

mSphere. 2018 Oct 24;3(5). pii: e00383-18. doi: 10.1128/mSphere.00383-18.

15.

Torulaspora delbrueckii produces high levels of C5 and C6 polyols during wine fermentations.

Mbuyane LL, de Kock M, Bauer FF, Divol B.

FEMS Yeast Res. 2018 Nov 1;18(7). doi: 10.1093/femsyr/foy084.

PMID:
30060050
16.

Carnitine Requires Choline to Exert Physiological Effects in Saccharomyces cerevisiae.

du Plessis M, Franken J, Bauer FF.

Front Microbiol. 2018 Jul 2;9:1362. doi: 10.3389/fmicb.2018.01362. eCollection 2018.

17.

Yeast Cell Wall Chitin Reduces Wine Haze Formation.

Ndlovu T, Divol B, Bauer FF.

Appl Environ Microbiol. 2018 Jun 18;84(13). pii: e00668-18. doi: 10.1128/AEM.00668-18. Print 2018 Jul 1.

18.

Modelling the sensory space of varietal wines: Mining of large, unstructured text data and visualisation of style patterns.

Valente CC, Bauer FF, Venter F, Watson B, Nieuwoudt HH.

Sci Rep. 2018 Mar 21;8(1):4987. doi: 10.1038/s41598-018-23347-w.

19.

The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains.

Fairbairn S, McKinnon A, Musarurwa HT, Ferreira AC, Bauer FF.

Front Microbiol. 2017 Dec 19;8:2554. doi: 10.3389/fmicb.2017.02554. eCollection 2017.

20.

The Impact of Saccharomyces cerevisiae on a Wine Yeast Consortium in Natural and Inoculated Fermentations.

Bagheri B, Bauer FF, Setati ME.

Front Microbiol. 2017 Oct 16;8:1988. doi: 10.3389/fmicb.2017.01988. eCollection 2017.

21.

Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae.

Shekhawat K, Bauer FF, Setati ME.

Appl Microbiol Biotechnol. 2017 Mar;101(6):2479-2491. doi: 10.1007/s00253-016-8001-y. Epub 2016 Dec 2.

PMID:
27913851
22.

Exploring the phenotypic space of non-Saccharomyces wine yeast biodiversity.

Rossouw D, Bauer FF.

Food Microbiol. 2016 May;55:32-46. doi: 10.1016/j.fm.2015.11.017. Epub 2015 Nov 30.

PMID:
26742614
23.

Sequence-based Analysis of the Vitis vinifera L. cv Cabernet Sauvignon Grape Must Mycobiome in Three South African Vineyards Employing Distinct Agronomic Systems.

Setati ME, Jacobson D, Bauer FF.

Front Microbiol. 2015 Nov 30;6:1358. doi: 10.3389/fmicb.2015.01358. eCollection 2015.

24.

A multivariate approach using attenuated total reflectance mid-infrared spectroscopy to measure the surface mannoproteins and β-glucans of yeast cell walls during wine fermentations.

Moore JP, Zhang SL, Nieuwoudt H, Divol B, Trygg J, Bauer FF.

J Agric Food Chem. 2015 Nov 18;63(45):10054-63. doi: 10.1021/acs.jafc.5b03154. Epub 2015 Nov 4.

PMID:
26488434
25.

Co-Flocculation of Yeast Species, a New Mechanism to Govern Population Dynamics in Microbial Ecosystems.

Rossouw D, Bagheri B, Setati ME, Bauer FF.

PLoS One. 2015 Aug 28;10(8):e0136249. doi: 10.1371/journal.pone.0136249. eCollection 2015.

26.

Identifying and assessing the impact of wine acid-related genes in yeast.

Chidi BS, Rossouw D, Bauer FF.

Curr Genet. 2016 Feb;62(1):149-64. doi: 10.1007/s00294-015-0498-6. Epub 2015 Jun 4.

PMID:
26040556
27.

Reconstruction of the carnitine biosynthesis pathway from Neurospora crassa in the yeast Saccharomyces cerevisiae.

Franken J, Burger A, Swiegers JH, Bauer FF.

Appl Microbiol Biotechnol. 2015 Aug;99(15):6377-89. doi: 10.1007/s00253-015-6561-x. Epub 2015 Apr 9.

PMID:
25851717
28.

Monitoring alcoholic fermentation: an untargeted approach.

Ferreira AC, Monforte AR, Teixeira CS, Martins R, Fairbairn S, Bauer FF.

J Agric Food Chem. 2014 Jul 16;62(28):6784-93. doi: 10.1021/jf502082z. Epub 2014 Jul 8.

PMID:
24976138
29.

Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts.

Schnierda T, Bauer FF, Divol B, van Rensburg E, Görgens JF.

Lett Appl Microbiol. 2014 May;58(5):478-85. doi: 10.1111/lam.12217. Epub 2014 Feb 11.

30.

Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae.

Franken J, Brandt BA, Tai SL, Bauer FF.

PLoS One. 2013 Oct 11;8(10):e77499. doi: 10.1371/journal.pone.0077499. eCollection 2013.

31.

Adjustment of trehalose metabolism in wine Saccharomyces cerevisiae strains to modify ethanol yields.

Rossouw D, Heyns EH, Setati ME, Bosch S, Bauer FF.

Appl Environ Microbiol. 2013 Sep;79(17):5197-207. doi: 10.1128/AEM.00964-13. Epub 2013 Jun 21.

32.

The vineyard yeast microbiome, a mixed model microbial map.

Setati ME, Jacobson D, Andong UC, Bauer FF.

PLoS One. 2012;7(12):e52609. doi: 10.1371/journal.pone.0052609. Epub 2012 Dec 26. Erratum in: PLoS One. 2013;8(9). doi:10.1371/annotation/b9d307d9-f5c1-4e0d-8945-c5a747b6f58e. Bauer, Florian [corrected to Bauer, Florian Franz].

33.

Role of glutathione in winemaking: a review.

Kritzinger EC, Bauer FF, du Toit WJ.

J Agric Food Chem. 2013 Jan 16;61(2):269-77. doi: 10.1021/jf303665z. Epub 2012 Dec 31. Review.

PMID:
23240621
34.

Genetic analysis of the metabolic pathways responsible for aroma metabolite production by Saccharomyces cerevisiae.

Styger G, Jacobson D, Prior BA, Bauer FF.

Appl Microbiol Biotechnol. 2013 May;97(10):4429-42. doi: 10.1007/s00253-012-4522-1. Epub 2012 Oct 31.

PMID:
23111598
35.

Many Saccharomyces cerevisiae Cell Wall Protein Encoding Genes Are Coregulated by Mss11, but Cellular Adhesion Phenotypes Appear Only Flo Protein Dependent.

Bester MC, Jacobson D, Bauer FF.

G3 (Bethesda). 2012 Jan;2(1):131-41. doi: 10.1534/g3.111.001644. Epub 2012 Jan 1.

36.

Transcriptional regulation and the diversification of metabolism in wine yeast strains.

Rossouw D, Jacobson D, Bauer FF.

Genetics. 2012 Jan;190(1):251-61. doi: 10.1534/genetics.111.132720. Epub 2011 Oct 31.

37.

The impact of co-inoculation with Oenococcus oeni on the trancriptome of Saccharomyces cerevisiae and on the flavour-active metabolite profiles during fermentation in synthetic must.

Rossouw D, Du Toit M, Bauer FF.

Food Microbiol. 2012 Feb;29(1):121-31. doi: 10.1016/j.fm.2011.09.006. Epub 2011 Sep 16.

PMID:
22029926
38.

The effect of scale on gene expression: commercial versus laboratory wine fermentations.

Rossouw D, Jolly N, Jacobson D, Bauer FF.

Appl Microbiol Biotechnol. 2012 Feb;93(3):1207-19. doi: 10.1007/s00253-011-3564-0. Epub 2011 Sep 20.

PMID:
21931974
39.

Wine flavor and aroma.

Styger G, Prior B, Bauer FF.

J Ind Microbiol Biotechnol. 2011 Sep;38(9):1145-59. doi: 10.1007/s10295-011-1018-4. Epub 2011 Jul 24. Review.

PMID:
21786136
40.

Effect of alternative NAD+-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant.

Jain VK, Divol B, Prior BA, Bauer FF.

Appl Microbiol Biotechnol. 2012 Jan;93(1):131-41. doi: 10.1007/s00253-011-3431-z. Epub 2011 Jul 1.

PMID:
21720823
41.

Identifying genes that impact on aroma profiles produced by Saccharomyces cerevisiae and the production of higher alcohols.

Styger G, Jacobson D, Bauer FF.

Appl Microbiol Biotechnol. 2011 Aug;91(3):713-30. doi: 10.1007/s00253-011-3237-z. Epub 2011 May 6.

PMID:
21547456
42.

Novel wine-mediated FLO11 flocculation phenotype of commercial Saccharomyces cerevisiae wine yeast strains with modified FLO gene expression.

Govender P, Kroppenstedt S, Bauer FF.

FEMS Microbiol Lett. 2011 Apr;317(2):117-26. doi: 10.1111/j.1574-6968.2011.02219.x. Epub 2011 Feb 8.

43.

Elimination of glycerol and replacement with alternative products in ethanol fermentation by Saccharomyces cerevisiae.

Jain VK, Divol B, Prior BA, Bauer FF.

J Ind Microbiol Biotechnol. 2011 Sep;38(9):1427-35. doi: 10.1007/s10295-010-0928-x. Epub 2010 Dec 25.

PMID:
21188613
44.

Yeast flocculation and its biotechnological relevance.

Bauer FF, Govender P, Bester MC.

Appl Microbiol Biotechnol. 2010 Sep;88(1):31-9. doi: 10.1007/s00253-010-2783-0. Epub 2010 Jul 31. Review.

PMID:
20676629
45.

Instrumental measurement of bitter taste in red wine using an electronic tongue.

Rudnitskaya A, Nieuwoudt HH, Muller N, Legin A, du Toit M, Bauer FF.

Anal Bioanal Chem. 2010 Aug;397(7):3051-60. doi: 10.1007/s00216-010-3885-3. Epub 2010 Jun 15.

PMID:
20549490
46.

Comparative transcriptomic and proteomic profiling of industrial wine yeast strains.

Rossouw D, van den Dool AH, Jacobson D, Bauer FF.

Appl Environ Microbiol. 2010 Jun;76(12):3911-23. doi: 10.1128/AEM.00586-10. Epub 2010 Apr 23.

47.

Carnitine supplementation has protective and detrimental effects in Saccharomyces cerevisiae that are genetically mediated.

Franken J, Bauer FF.

FEMS Yeast Res. 2010 May;10(3):270-81. doi: 10.1111/j.1567-1364.2010.00610.x. Epub 2010 Jan 28.

48.

FLO gene-dependent phenotypes in industrial wine yeast strains.

Govender P, Bester M, Bauer FF.

Appl Microbiol Biotechnol. 2010 Apr;86(3):931-45. doi: 10.1007/s00253-009-2381-1. Epub 2009 Dec 16.

PMID:
20013339
49.

Comparing the transcriptomes of wine yeast strains: toward understanding the interaction between environment and transcriptome during fermentation.

Rossouw D, Bauer FF.

Appl Microbiol Biotechnol. 2009 Oct;84(5):937-54. doi: 10.1007/s00253-009-2204-4. Epub 2009 Aug 27.

PMID:
19711068
50.

Comparative transcriptomic approach to investigate differences in wine yeast physiology and metabolism during fermentation.

Rossouw D, Olivares-Hernandes R, Nielsen J, Bauer FF.

Appl Environ Microbiol. 2009 Oct;75(20):6600-12. doi: 10.1128/AEM.01251-09. Epub 2009 Aug 21.

Supplemental Content

Loading ...
Support Center