Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 88

1.

Progression of convulsive and nonconvulsive seizures during epileptogenesis after pilocarpine-induced status epilepticus.

Smith ZZ, Benison AM, Bercum FM, Dudek FE, Barth DS.

J Neurophysiol. 2018 May 1;119(5):1818-1835. doi: 10.1152/jn.00721.2017. Epub 2018 Feb 14.

PMID:
29442558
2.

Voluntary Control of Epileptiform Spike-Wave Discharges in Awake Rats.

Taylor JA, Rodgers KM, Bercum FM, Booth CJ, Dudek FE, Barth DS.

J Neurosci. 2017 Jun 14;37(24):5861-5869. doi: 10.1523/JNEUROSCI.3235-16.2017. Epub 2017 May 18.

3.

Maternal Stress Combined with Terbutaline Leads to Comorbid Autistic-Like Behavior and Epilepsy in a Rat Model.

Bercum FM, Rodgers KM, Benison AM, Smith ZZ, Taylor J, Kornreich E, Grabenstatter HL, Dudek FE, Barth DS.

J Neurosci. 2015 Dec 2;35(48):15894-902. doi: 10.1523/JNEUROSCI.2803-15.2015.

4.

Macroscale Transformation Optics Enabled by Photoelectrochemical Etching.

Barth DS, Gladden C, Salandrino A, O'Brien K, Ye Z, Mrejen M, Wang Y, Zhang X.

Adv Mater. 2015 Oct 28;27(40):6131-6. doi: 10.1002/adma.201502322. Epub 2015 Sep 1.

PMID:
26332896
5.

Progressive, Seizure-Like, Spike-Wave Discharges Are Common in Both Injured and Uninjured Sprague-Dawley Rats: Implications for the Fluid Percussion Injury Model of Post-Traumatic Epilepsy.

Rodgers KM, Dudek FE, Barth DS.

J Neurosci. 2015 Jun 17;35(24):9194-204. doi: 10.1523/JNEUROSCI.0919-15.2015. Erratum in: J Neurosci. 2015 Aug 19;35(33):11761.

6.

Magnetoencephalography of epilepsy with a microfabricated atomic magnetrode.

Alem O, Benison AM, Barth DS, Kitching J, Knappe S.

J Neurosci. 2014 Oct 22;34(43):14324-7. doi: 10.1523/JNEUROSCI.3495-14.2014.

7.

Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae.

Grace PM, Ramos KM, Rodgers KM, Wang X, Hutchinson MR, Lewis MT, Morgan KN, Kroll JL, Taylor FR, Strand KA, Zhang Y, Berkelhammer D, Huey MG, Greene LI, Cochran TA, Yin H, Barth DS, Johnson KW, Rice KC, Maier SF, Watkins LR.

Neuroscience. 2014 Nov 7;280:299-317. doi: 10.1016/j.neuroscience.2014.09.020. Epub 2014 Sep 18.

8.

Reversal of established traumatic brain injury-induced, anxiety-like behavior in rats after delayed, post-injury neuroimmune suppression.

Rodgers KM, Deming YK, Bercum FM, Chumachenko SY, Wieseler JL, Johnson KW, Watkins LR, Barth DS.

J Neurotrauma. 2014 Mar 1;31(5):487-97. doi: 10.1089/neu.2013.3090. Epub 2013 Nov 20.

9.

Acute neuroimmune modulation attenuates the development of anxiety-like freezing behavior in an animal model of traumatic brain injury.

Rodgers KM, Bercum FM, McCallum DL, Rudy JW, Frey LC, Johnson KW, Watkins LR, Barth DS.

J Neurotrauma. 2012 Jul 1;29(10):1886-97. doi: 10.1089/neu.2011.2273. Epub 2012 Apr 26.

10.

Safety signals mitigate the consequences of uncontrollable stress via a circuit involving the sensory insular cortex and bed nucleus of the stria terminalis.

Christianson JP, Jennings JH, Ragole T, Flyer JG, Benison AM, Barth DS, Watkins LR, Maier SF.

Biol Psychiatry. 2011 Sep 1;70(5):458-64. doi: 10.1016/j.biopsych.2011.04.004.

11.

Caudal granular insular cortex is sufficient and necessary for the long-term maintenance of allodynic behavior in the rat attributable to mononeuropathy.

Benison AM, Chumachenko S, Harrison JA, Maier SF, Falci SP, Watkins LR, Barth DS.

J Neurosci. 2011 Apr 27;31(17):6317-28. doi: 10.1523/JNEUROSCI.0076-11.2011.

12.

The cortical innate immune response increases local neuronal excitability leading to seizures.

Rodgers KM, Hutchinson MR, Northcutt A, Maier SF, Watkins LR, Barth DS.

Brain. 2009 Sep;132(Pt 9):2478-86. doi: 10.1093/brain/awp177. Epub 2009 Jun 30.

13.

The sensory insular cortex mediates the stress-buffering effects of safety signals but not behavioral control.

Christianson JP, Benison AM, Jennings J, Sandsmark EK, Amat J, Kaufman RD, Baratta MV, Paul ED, Campeau S, Watkins LR, Barth DS, Maier SF.

J Neurosci. 2008 Dec 10;28(50):13703-11. doi: 10.1523/JNEUROSCI.4270-08.2008.

14.

Auditory, somatosensory, and multisensory insular cortex in the rat.

Rodgers KM, Benison AM, Klein A, Barth DS.

Cereb Cortex. 2008 Dec;18(12):2941-51. doi: 10.1093/cercor/bhn054. Epub 2008 Apr 18.

15.

A multicenter trial of the effectiveness of zeta-globin enzyme-linked immunosorbent assay and hemoglobin H inclusion body screening for the detection of alpha0-thalassemia trait.

Lafferty JD, Barth DS, Sheridan BL, McFarlane AG, Halchuk LM, Raby A, Crowther MA.

Am J Clin Pathol. 2008 Feb;129(2):309-15. doi: 10.1309/MNPF3XXXVAX5NM9H.

PMID:
18208812
16.

Prevalence of thalassemia in patients with microcytosis referred for hemoglobinopathy investigation in Ontario: a prospective cohort study.

Lafferty JD, Barth DS, Sheridan BL, McFarlane AG, Halchuk LM, Crowther MA.

Am J Clin Pathol. 2007 Feb;127(2):192-6.

PMID:
17210523
17.

Hemispheric mapping of secondary somatosensory cortex in the rat.

Benison AM, Rector DM, Barth DS.

J Neurophysiol. 2007 Jan;97(1):200-7. Epub 2006 Sep 27.

18.

Two-dimensional coincidence detection in the vibrissa/barrel field.

Rodgers KM, Benison AM, Barth DS.

J Neurophysiol. 2006 Oct;96(4):1981-90. Epub 2006 Jun 21.

19.

Temporal patterns of field potentials in vibrissa/barrel cortex reveal stimulus orientation and shape.

Benison AM, Ard TD, Crosby AM, Barth DS.

J Neurophysiol. 2006 Apr;95(4):2242-51. Epub 2006 Jan 4.

20.

Multisensory and secondary somatosensory cortex in the rat.

Menzel RR, Barth DS.

Cereb Cortex. 2005 Nov;15(11):1690-6. Epub 2005 Feb 9.

PMID:
15703251
21.

Intracortical pathways mediate nonlinear fast oscillation (>200 Hz) interactions within rat barrel cortex.

Staba RJ, Ard TD, Benison AM, Barth DS.

J Neurophysiol. 2005 May;93(5):2934-9. Epub 2004 Dec 8.

22.

Dissociation of slow waves and fast oscillations above 200 Hz during GABA application in rat somatosensory cortex.

Staba RJ, Bergmann PC, Barth DS.

J Physiol. 2004 Nov 15;561(Pt 1):205-14. Epub 2004 Oct 1.

23.

Two distinct regions of secondary somatosensory cortex in the rat: topographical organization and multisensory responses.

Brett-Green B, Paulsen M, Staba RJ, Fifková E, Barth DS.

J Neurophysiol. 2004 Mar;91(3):1327-36. Epub 2003 Oct 29.

24.

A multisensory zone in rat parietotemporal cortex: intra- and extracellular physiology and thalamocortical connections.

Brett-Green B, Fifková E, Larue DT, Winer JA, Barth DS.

J Comp Neurol. 2003 May 26;460(2):223-37.

PMID:
12687687
25.
26.

Effects of ventrobasal lesion and cortical cooling on fast oscillations (>200 Hz) in rat somatosensory cortex.

Staba RJ, Brett-Green B, Paulsen M, Barth DS.

J Neurophysiol. 2003 May;89(5):2380-8. Epub 2003 Jan 15.

27.
28.

Cellular mechanisms of thalamically evoked gamma oscillations in auditory cortex.

Sukov W, Barth DS.

J Neurophysiol. 2001 Mar;85(3):1235-45.

29.

NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development.

Kim WY, Fritzsch B, Serls A, Bakel LA, Huang EJ, Reichardt LF, Barth DS, Lee JE.

Development. 2001 Feb;128(3):417-26.

30.

Intracellular correlates of fast (>200 Hz) electrical oscillations in rat somatosensory cortex.

Jones MS, MacDonald KD, Choi B, Dudek FE, Barth DS.

J Neurophysiol. 2000 Sep;84(3):1505-18.

31.
32.
33.

Focal stimulation of the thalamic reticular nucleus induces focal gamma waves in cortex.

Macdonald KD, Fifkova E, Jones MS, Barth DS.

J Neurophysiol. 1998 Jan;79(1):474-7.

34.
35.
36.

Thalamic modulation of high-frequency oscillating potentials in auditory cortex.

Barth DS, MacDonald KD.

Nature. 1996 Sep 5;383(6595):78-81.

PMID:
8779725
37.

Inter- and intra-hemispheric spatiotemporal organization of spontaneous electrocortical oscillations.

MacDonald KD, Brett B, Barth DS.

J Neurophysiol. 1996 Jul;76(1):423-37.

PMID:
8836234
39.

High frequency (gamma-band) oscillating potentials in rat somatosensory and auditory cortex.

MacDonald KD, Barth DS.

Brain Res. 1995 Oct 2;694(1-2):1-12.

PMID:
8974632
40.
41.

The spatiotemporal organization of auditory, visual, and auditory-visual evoked potentials in rat cortex.

Barth DS, Goldberg N, Brett B, Di S.

Brain Res. 1995 Apr 24;678(1-2):177-90.

PMID:
7620886
42.

MEG and ECoG localization accuracy test.

Gharib S, Sutherling WW, Nakasato N, Barth DS, Baumgartner C, Alexopoulos N, Taylor S, Rogers RL.

Electroencephalogr Clin Neurophysiol. 1995 Feb;94(2):109-14.

PMID:
7532571
43.

Comparisons of MEG, EEG, and ECoG source localization in neocortical partial epilepsy in humans.

Nakasato N, Levesque MF, Barth DS, Baumgartner C, Rogers RL, Sutherling WW.

Electroencephalogr Clin Neurophysiol. 1994 Sep;91(3):171-8.

PMID:
7522146
44.
45.
46.
47.

Binaural vs. monaural auditory evoked potentials in rat neocortex.

Di S, Barth DS.

Brain Res. 1993 Dec 10;630(1-2):303-14.

PMID:
8118697
48.
49.
50.

Supplemental Content

Loading ...
Support Center