Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 15

1.

Regularized SCAN functional.

Bartók AP, Yates JR.

J Chem Phys. 2019 Apr 28;150(16):161101. doi: 10.1063/1.5094646.

PMID:
31042928
2.

Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics.

Deringer VL, Bernstein N, Bartók AP, Cliffe MJ, Kerber RN, Marbella LE, Grey CP, Elliott SR, Csányi G.

J Phys Chem Lett. 2018 Jun 7;9(11):2879-2885. doi: 10.1021/acs.jpclett.8b00902. Epub 2018 May 17.

3.

Machine learning unifies the modeling of materials and molecules.

Bartók AP, De S, Poelking C, Bernstein N, Kermode JR, Csányi G, Ceriotti M.

Sci Adv. 2017 Dec 13;3(12):e1701816. doi: 10.1126/sciadv.1701816. eCollection 2017 Dec.

4.

Tin chemical shift anisotropy in tin dioxide: On ambiguity of CSA asymmetry derived from MAS spectra.

Aliev AE, Bartók AP, Yates JR.

Solid State Nucl Magn Reson. 2018 Feb;89:1-10. doi: 10.1016/j.ssnmr.2017.11.002. Epub 2017 Nov 28.

PMID:
29202302
5.

Polytypism in the ground state structure of the Lennard-Jonesium.

Pártay LB, Ortner C, Bartók AP, Pickard CJ, Csányi G.

Phys Chem Chem Phys. 2017 Jul 26;19(29):19369-19376. doi: 10.1039/c7cp02923c.

PMID:
28707687
6.

Modeling Molecular Interactions in Water: From Pairwise to Many-Body Potential Energy Functions.

Cisneros GA, Wikfeldt KT, Ojamäe L, Lu J, Xu Y, Torabifard H, Bartók AP, Csányi G, Molinero V, Paesani F.

Chem Rev. 2016 Jul 13;116(13):7501-28. doi: 10.1021/acs.chemrev.5b00644. Epub 2016 May 17. Review.

7.

Comparing molecules and solids across structural and alchemical space.

De S, Bartók AP, Csányi G, Ceriotti M.

Phys Chem Chem Phys. 2016 May 18;18(20):13754-69. doi: 10.1039/c6cp00415f.

PMID:
27101873
8.

Nested sampling for materials: the case of hard spheres.

Pártay LB, Bartók AP, Csányi G.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022302. Epub 2014 Feb 6.

PMID:
25353467
9.

Analyzing the errors of DFT approximations for compressed water systems.

Alfè D, Bartók AP, Csányi G, Gillan MJ.

J Chem Phys. 2014 Jul 7;141(1):014104. doi: 10.1063/1.4885440.

PMID:
25005274
10.

First-principles energetics of water clusters and ice: a many-body analysis.

Gillan MJ, Alfè D, Bartók AP, Csányi G.

J Chem Phys. 2013 Dec 28;139(24):244504. doi: 10.1063/1.4852182.

PMID:
24387379
11.

Communication: energy benchmarking with quantum Monte Carlo for water nano-droplets and bulk liquid water.

Alfè D, Bartók AP, Csányi G, Gillan MJ.

J Chem Phys. 2013 Jun 14;138(22):221102. doi: 10.1063/1.4810882.

PMID:
23781773
12.

Efficient sampling of atomic configurational spaces.

Pártay LB, Bartók AP, Csányi G.

J Phys Chem B. 2010 Aug 19;114(32):10502-12. doi: 10.1021/jp1012973.

PMID:
20701382
13.

Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons.

Bartók AP, Payne MC, Kondor R, Csányi G.

Phys Rev Lett. 2010 Apr 2;104(13):136403. Epub 2010 Apr 1.

PMID:
20481899
14.

Structural and thermodynamic properties of different phases of supercooled liquid water.

Jedlovszky P, Pártay LB, Bartók AP, Voloshin VP, Medvedev NN, Garberoglio G, Vallauri R.

J Chem Phys. 2008 Jun 28;128(24):244503. doi: 10.1063/1.2939119.

PMID:
18601345
15.

Structure of coexisting liquid phases of supercooled water: analogy with ice polymorphs.

Jedlovszky P, Pártay LB, Bartók AP, Garberoglio G, Vallauri R.

J Chem Phys. 2007 Jun 28;126(24):241103.

PMID:
17614529

Supplemental Content

Loading ...
Support Center