Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 42

1.

Extracellular matrix degradation by cultured mesangial cells: mediators and modulators.

Baricos WH, Reed JC, Cortez SL.

Exp Biol Med (Maywood). 2003 Oct;228(9):1018-22.

PMID:
14530509
2.

Binding to Elongin C inhibits degradation of interacting proteins in yeast.

Hyman LE, Kwon E, Ghosh S, McGee J, Chachulska AM, Jackson T, Baricos WH.

J Biol Chem. 2002 May 3;277(18):15586-91. Epub 2002 Feb 25.

3.

Protease mediated tubular injury: a new direction in acute renal failure?

Baricos WH.

Kidney Int. 2002 Mar;61(3):1174-5. No abstract available.

4.

Identification, cellular distribution and potential function of the metalloprotease-disintegrin MDC9 in the kidney.

Mahimkar RM, Baricos WH, Visaya O, Pollock AS, Lovett DH.

J Am Soc Nephrol. 2000 Apr;11(4):595-603.

5.
6.

Bradykinin stimulates the ERK-->Elk-1-->Fos/AP-1 pathway in mesangial cells.

El-Dahr SS, Dipp S, Baricos WH.

Am J Physiol. 1998 Sep;275(3):F343-52. doi: 10.1152/ajprenal.1998.275.3.F343.

PMID:
9729506
7.
8.

Plasminogen activators augment endothelial cell organization in vitro by two distinct pathways.

Schnaper HW, Barnathan ES, Mazar A, Maheshwari S, Ellis S, Cortez SL, Baricos WH, Kleinman HK.

J Cell Physiol. 1995 Oct;165(1):107-18.

PMID:
7559792
9.
10.

ECM degradation by cultured human mesangial cells is mediated by a PA/plasmin/MMP-2 cascade.

Baricos WH, Cortez SL, el-Dahr SS, Schnaper HW.

Kidney Int. 1995 Apr;47(4):1039-47.

11.

Pathogenesis of IgA nephropathy in ethanol consumption: animal model and cell culture studies.

Smith SM, Leaber R, Lefebre A, Leung MF, Baricos WH, Leung WC.

Alcohol. 1993 Nov-Dec;10(6):477-80. Review.

PMID:
8123203
12.

Role of plasmin and gelatinase in extracellular matrix degradation by cultured rat mesangial cells.

Wong AP, Cortez SL, Baricos WH.

Am J Physiol. 1992 Dec;263(6 Pt 2):F1112-8.

PMID:
1481887
13.

Proteolytic enzymes as mediators of glomerular injury.

Baricos WH, Shah SV.

Kidney Int. 1991 Aug;40(2):161-73. No abstract available.

14.

Evidence suggesting a role for cathepsin L in an experimental model of glomerulonephritis.

Baricos WH, Cortez SL, Le QC, Wu LT, Shaw E, Hanada K, Shah SV.

Arch Biochem Biophys. 1991 Aug 1;288(2):468-72.

PMID:
1898042
15.

Glomerular injury and proteolytic enzymes.

Baricos WH, Shah SV.

Semin Nephrol. 1991 May;11(3):327-31. Review. No abstract available.

PMID:
2057646
16.

Glomerular basement membrane degradation by endogenous cysteine proteinases in isolated rat glomeruli.

Baricos WH, Cortez SL, Le QC, Zhou YW, Dicarlo RM, O'Connor SE, Shah SV.

Kidney Int. 1990 Sep;38(3):395-401.

17.

Role of cathepsin B and L in anti-glomerular basement membrane nephritis in rats.

Baricos WH, Shah SV.

Ren Physiol Biochem. 1989 Sep-Dec;12(5-6):400-5.

PMID:
2623352
18.

The cysteine proteinase inhibitor, E-64, reduces proteinuria in an experimental model of glomerulonephritis.

Baricos WH, O'Connor SE, Cortez SL, Wu LT, Shah SV.

Biochem Biophys Res Commun. 1988 Sep 30;155(3):1318-23.

PMID:
3178811
19.

Degradation of glomerular basement membrane by purified mammalian metalloproteinases.

Baricos WH, Murphy G, Zhou YW, Nguyen HH, Shah SV.

Biochem J. 1988 Sep 1;254(2):609-12.

20.
21.

The role of aspartic and cysteine proteinases in albumin degradation by rat kidney cortical lysosomes.

Baricos WH, Zhou YW, Fuerst RS, Barrett AJ, Shah SV.

Arch Biochem Biophys. 1987 Aug 1;256(2):687-91.

PMID:
3304168
23.

Degradation of glomerular basement membrane by a neutral metalloproteinase(s) present in glomeruli isolated from normal rat kidney.

Nguyen HH, Baricos WH, Shah SV.

Biochem Biophys Res Commun. 1986 Dec 30;141(3):898-903.

PMID:
3101682
24.
26.

Cerebral phospholipid content and Na+,K+-ATPase activity during ischemia and postischemic reperfusion in the mongolian gerbil.

Enseleit WH, Domer FR, Jarrott DM, Baricos WH.

J Neurochem. 1984 Aug;43(2):320-7.

PMID:
6330297
27.

NADPH-induced chemiluminescence and lipid peroxidation in kidney microsomes.

Shah SV, Cruz FC, Baricos WH.

Kidney Int. 1983 May;23(5):691-8. No abstract available.

28.

KCN-induced urinary chemiluminescence (UCL): inhibition by ascorbic acid.

Baricos WH, Wizer B, Muhiudeen IA, Steele RH.

Res Commun Chem Pathol Pharmacol. 1982 Nov;38(2):339-42.

PMID:
7163632
29.
30.
31.

Mitochondrial chemiluminescence elicited by acetaldehyde.

Boh EE, Baricos WH, Bernofsky C, Steele RH.

J Bioenerg Biomembr. 1982 Apr;14(2):115-33.

PMID:
6284733
32.

Activation of hepatic guanylate cyclase by nitrosyl-heme complexes. Comparison of unpurified and partially purified enzyme.

Edwards JC, Barry BK, Gruetter DY, Ohlstein EH, Baricos WH, Ignarro LJ.

Biochem Pharmacol. 1981 Sep 15;30(18):2531-8. No abstract available.

PMID:
6118153
33.

Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates.

Ignarro LJ, Lippton H, Edwards JC, Baricos WH, Hyman AL, Kadowitz PJ, Gruetter CA.

J Pharmacol Exp Ther. 1981 Sep;218(3):739-49. No abstract available.

PMID:
6115052
34.

Evidence that regulation of hepatic guanylate cyclase activity involves interactions between catalytic site -SH groups and both substrate and activator.

Ignarro LJ, Kadowitz PJ, Baricos WH.

Arch Biochem Biophys. 1981 Apr 15;208(1):75-86. No abstract available.

PMID:
6114709
35.

Selective alterations in responsiveness of guanylate cyclase to activation by nitroso compounds during enzyme purification.

Ignarro LJ, Barry BK, Gruetter DY, Ohlstein EH, Gruetter CA, Kadowitz PJ, Baricos WH.

Biochim Biophys Acta. 1981 Apr 3;673(4):394-407. No abstract available.

PMID:
6112020
36.

Activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside, and nitrosoguanidine--inhibition by calcium, lanthanum, and other cations, enhancement by thiols.

Gruetter DY, Gruetter CA, Barry BK, Baricos WH, Hyman AL, Kadowitz PJ, Ignarro LJ.

Biochem Pharmacol. 1980 Nov 1;29(21):2943-50. No abstract available.

PMID:
6109533
37.

Guanylate cyclase activation of nitroprusside and nitrosoguanidine is related to formation of S-nitrosothiol intermediates.

Ignarro LJ, Barry BK, Gruetter DY, Edwards JC, Ohlstein EH, Gruetter CA, Baricos WH.

Biochem Biophys Res Commun. 1980 May 14;94(1):93-100. No abstract available.

PMID:
6104490
38.

The effects of cyclic nucleotides and some related agents on 32Pi labeling of renal polyphosphoinositides in vitro.

Baricos WH, Hurst MW, Huggins CG.

Arch Biochem Biophys. 1979 Aug;196(1):227-32. No abstract available.

PMID:
228597
39.

Characteristics of altered oxygen utilization in spontaneously hypertensive rats.

Walsh GM, Baricos WH, MacPhee AA.

Res Commun Chem Pathol Pharmacol. 1978 Oct;22(1):135-43. No abstract available.

PMID:
725313
40.

Physical immobilization of enzymes by hollow-fiber membranes.

Chambers RP, Cohen W, Baricos WH.

Methods Enzymol. 1976;44:291-317. No abstract available.

PMID:
1021686
41.

The hydrolysis of triphosphoinositide by a phosphodiesterase in rat kidney cortex.

Tou JS, Hurst MW, Baricos WH, Huggins CG.

Arch Biochem Biophys. 1973 Feb;154(2):593-600. No abstract available.

PMID:
4348010
42.

The metabolism of phosphoinositides in rat kidney, in vivo.

Tou JS, Hurst MW, Baricos WH, Huggins CG.

Arch Biochem Biophys. 1972 Mar;149(1):146-52. No abstract available.

PMID:
4335957

Supplemental Content

Loading ...
Support Center