Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 9

1.

The spectrum of pathogenic variants of the ATP7B gene in Wilson disease in the Russian Federation.

Balashova MS, Tuluzanovskaya IG, Glotov OS, Glotov AS, Barbitoff YA, Fedyakov MA, Alaverdian DA, Ivashchenko TE, Romanova OV, Sarana AM, Scherbak SG, Baranov VS, Filimonov MI, Skalny AV, Zhuchenko NA, Ignatova TM, Asanov AY.

J Trace Elem Med Biol. 2019 Oct 25:126420. doi: 10.1016/j.jtemb.2019.126420. [Epub ahead of print]

PMID:
31708252
2.

Whole‑exome sequencing in Russian children with non‑type 1 diabetes mellitus reveals a wide spectrum of genetic variants in MODY‑related and unrelated genes.

Glotov OS, Serebryakova EA, Turkunova ME, Efimova OA, Glotov AS, Barbitoff YA, Nasykhova YA, Predeus AV, Polev DE, Fedyakov MA, Polyakova IV, Ivashchenko TE, Shved NY, Shabanova ES, Tiselko AV, Romanova OV, Sarana AM, Pendina AA, Scherbak SG, Musina EV, Petrovskaia-Kaminskaia AV, Lonishin LR, Ditkovskaya LV, Zhelenina LА, Tyrtova LV, Berseneva OS, Skitchenko RK, Suspitsin EN, Bashnina EB, Baranov VS.

Mol Med Rep. 2019 Dec;20(6):4905-4914. doi: 10.3892/mmr.2019.10751. Epub 2019 Oct 16.

PMID:
31638168
3.

Whole-exome sequencing provides insights into monogenic disease prevalence in Northwest Russia.

Barbitoff YA, Skitchenko RK, Poleshchuk OI, Shikov AE, Serebryakova EA, Nasykhova YA, Polev DE, Shuvalova AR, Shcherbakova IV, Fedyakov MA, Glotov OS, Glotov AS, Predeus AV.

Mol Genet Genomic Med. 2019 Nov;7(11):e964. doi: 10.1002/mgg3.964. Epub 2019 Sep 3.

4.

Recent advances and perspectives in next generation sequencing application to the genetic research of type 2 diabetes.

Nasykhova YA, Barbitoff YA, Serebryakova EA, Katserov DS, Glotov AS.

World J Diabetes. 2019 Jul 15;10(7):376-395. doi: 10.4239/wjd.v10.i7.376. Review.

5.

Identification of Novel Candidate Markers of Type 2 Diabetes and Obesity in Russia by Exome Sequencing with a Limited Sample Size.

Barbitoff YA, Serebryakova EA, Nasykhova YA, Predeus AV, Polev DE, Shuvalova AR, Vasiliev EV, Urazov SP, Sarana AM, Scherbak SG, Gladyshev DV, Pokrovskaya MS, Sivakova OV, Meshkov AN, Drapkina OM, Glotov OS, Glotov AS.

Genes (Basel). 2018 Aug 17;9(8). pii: E415. doi: 10.3390/genes9080415.

6.

Catching hidden variation: systematic correction of reference minor allele annotation in clinical variant calling.

Barbitoff YA, Bezdvornykh IV, Polev DE, Serebryakova EA, Glotov AS, Glotov OS, Predeus AV.

Genet Med. 2018 Mar;20(3):360-364. doi: 10.1038/gim.2017.168. Epub 2017 Oct 26.

PMID:
29155419
7.

Differential effects of chaperones on yeast prions: CURrent view.

Matveenko AG, Barbitoff YA, Jay-Garcia LM, Chernoff YO, Zhouravleva GA.

Curr Genet. 2018 Apr;64(2):317-325. doi: 10.1007/s00294-017-0750-3. Epub 2017 Sep 20. Review.

PMID:
28932898
8.

To CURe or not to CURe? Differential effects of the chaperone sorting factor Cur1 on yeast prions are mediated by the chaperone Sis1.

Barbitoff YA, Matveenko AG, Moskalenko SE, Zemlyanko OM, Newnam GP, Patel A, Chernova TA, Chernoff YO, Zhouravleva GA.

Mol Microbiol. 2017 Jul;105(2):242-257. doi: 10.1111/mmi.13697. Epub 2017 May 9.

9.

SFP1-mediated prion-dependent lethality is caused by increased Sup35 aggregation and alleviated by Sis1.

Matveenko AG, Drozdova PB, Belousov MV, Moskalenko SE, Bondarev SA, Barbitoff YA, Nizhnikov AA, Zhouravleva GA.

Genes Cells. 2016 Dec;21(12):1290-1308. doi: 10.1111/gtc.12444. Epub 2016 Oct 12.

Supplemental Content

Loading ...
Support Center