Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 85

1.

Antibody Dependent Enhancement of Acinetobacter baumannii Infection in a Mouse Pneumonia Model.

Wang-Lin SX, Olson R, Beanan JM, MacDonald U, Russo TA, Balthasar J.

J Pharmacol Exp Ther. 2019 Jan 3. pii: jpet.118.253617. doi: 10.1124/jpet.118.253617. [Epub ahead of print]

2.

Physiologically-based modeling of monoclonal antibody pharmacokinetics in drug discovery and development.

Glassman PM, Balthasar JP.

Drug Metab Pharmacokinet. 2018 Nov 22. pii: S1347-4367(18)30133-2. doi: 10.1016/j.dmpk.2018.11.002. [Epub ahead of print] Review.

PMID:
30522890
3.
4.

Application of Physiologically Based Pharmacokinetic Modeling to Predict the Effects of FcRn Inhibitors in Mice, Rats, and Monkeys.

Li T, Balthasar JP.

J Pharm Sci. 2019 Jan;108(1):701-713. doi: 10.1016/j.xphs.2018.10.065. Epub 2018 Nov 10.

PMID:
30423340
5.

Fifty-Eight Years and Counting: High-Impact Publishing in Computational Pharmaceutical Sciences and Mechanism-Based Modeling.

Amidon GE, Anderson BD, Balthasar JP, Bergstrom CAS, Huang SM, Kasting G, Kesisoglou F, Khinast JG, Mager DE, Roberts CJ, Yu L.

J Pharm Sci. 2019 Jan;108(1):2-7. doi: 10.1016/j.xphs.2018.11.002. Epub 2018 Nov 10.

PMID:
30423338
6.

FcRn Expression in Wildtype Mice, Transgenic Mice, and in Human Tissues.

Li T, Balthasar JP.

Biomolecules. 2018 Oct 15;8(4). pii: E115. doi: 10.3390/biom8040115.

7.

Physiologically Based Modeling of the Pharmacokinetics of "Catch-and-Release" Anti-Carcinoembryonic Antigen Monoclonal Antibodies in Colorectal Cancer Xenograft Mouse Models.

Polli JR, Engler FA, Balthasar JP.

J Pharm Sci. 2019 Jan;108(1):674-691. doi: 10.1016/j.xphs.2018.09.037. Epub 2018 Oct 12.

PMID:
30321546
8.

In silico insights on Tankyrase protein: a potential target for colorectal cancer.

Lakshmanan L, Muthusamy K, Marshal JJ, Kajamaideen A, Balthasar JJ.

J Biomol Struct Dyn. 2018 Sep 11:1-29. doi: 10.1080/07391102.2018.1521748. [Epub ahead of print]

PMID:
30204055
9.

"Catch-and-Release" Anti-Carcinoembryonic Antigen Monoclonal Antibody Leads to Greater Plasma and Tumor Exposure in a Mouse Model of Colorectal Cancer.

Engler FA, Polli JR, Li T, An B, Otteneder M, Qu J, Balthasar JP.

J Pharmacol Exp Ther. 2018 Jul;366(1):205-219. doi: 10.1124/jpet.117.246900. Epub 2018 May 7.

PMID:
29735609
10.

Sensitive, High-Throughput, and Robust Trapping-Micro-LC-MS Strategy for the Quantification of Biomarkers and Antibody Biotherapeutics.

Zhang M, An B, Qu Y, Shen S, Fu W, Chen YJ, Wang X, Young R, Canty JM Jr, Balthasar JP, Murphy K, Bhattacharyya D, Josephs J, Ferrari L, Zhou S, Bansal S, Vazvaei F, Qu J.

Anal Chem. 2018 Feb 6;90(3):1870-1880. doi: 10.1021/acs.analchem.7b03949. Epub 2018 Jan 8.

11.

The Capsular Polysaccharide of Acinetobacter baumannii Is an Obstacle for Therapeutic Passive Immunization Strategies.

Wang-Lin SX, Olson R, Beanan JM, MacDonald U, Balthasar JP, Russo TA.

Infect Immun. 2017 Nov 17;85(12). pii: e00591-17. doi: 10.1128/IAI.00591-17. Print 2017 Dec.

12.

Investigation of the Influence of Protein-Losing Enteropathy on Monoclonal Antibody Pharmacokinetics in Mice.

Yang Y, Li TR, Balthasar JP.

AAPS J. 2017 Nov;19(6):1791-1803. doi: 10.1208/s12248-017-0135-z. Epub 2017 Aug 28.

PMID:
28849396
13.

Physiologically-based modeling to predict the clinical behavior of monoclonal antibodies directed against lymphocyte antigens.

Glassman PM, Balthasar JP.

MAbs. 2017 Feb/Mar;9(2):297-306. doi: 10.1080/19420862.2016.1261775. Epub 2016 Nov 28.

14.

Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies.

Glassman PM, Balthasar JP.

J Pharmacokinet Pharmacodyn. 2016 Aug;43(4):427-46. doi: 10.1007/s10928-016-9482-0. Epub 2016 Jul 4.

PMID:
27377311
15.

Development and validation of an enzyme-linked immunosorbent assay for the quantification of gelonin in mouse plasma.

Engler FA, Balthasar JP.

J Immunoassay Immunochem. 2016;37(6):611-22. doi: 10.1080/15321819.2016.1182551.

PMID:
27135787
16.

Qualitative and quantitative characterization of protein biotherapeutics with liquid chromatography mass spectrometry.

Qu M, An B, Shen S, Zhang M, Shen X, Duan X, Balthasar JP, Qu J.

Mass Spectrom Rev. 2017 Nov;36(6):734-754. doi: 10.1002/mas.21500. Epub 2016 Apr 20. Review.

PMID:
27097288
17.

Application of a catenary PBPK model to predict the disposition of "catch and release" anti-PCSK9 antibodies.

Glassman PM, Balthasar JP.

Int J Pharm. 2016 May 30;505(1-2):69-78. doi: 10.1016/j.ijpharm.2016.03.066. Epub 2016 Mar 31.

PMID:
27041125
18.

Sorafenib Decreases Tumor Exposure to an Anti-carcinoembryonic Antigen Monoclonal Antibody in a Mouse Model of Colorectal Cancer.

Thomas VA, Balthasar JP.

AAPS J. 2016 Jul;18(4):923-32. doi: 10.1208/s12248-016-9909-y. Epub 2016 Mar 30.

PMID:
27029796
19.

Efficacy and Clinical Value of Commonly Used Ingredients in Pain Management Compounds: A LITERATURE REVIEW.

Beshay SM, Rivera G, Balthasar J, Florea N.

Int J Pharm Compd. 2015 Jul-Aug;19(4):295-300. Review.

PMID:
26625565
20.

Scale-up of a physiologically-based pharmacokinetic model to predict the disposition of monoclonal antibodies in monkeys.

Glassman PM, Chen Y, Balthasar JP.

J Pharmacokinet Pharmacodyn. 2015 Oct;42(5):527-40. doi: 10.1007/s10928-015-9444-y. Epub 2015 Sep 12.

PMID:
26364301
21.

Efficacy and clinical value of commonly compounded hormone replacement therapy: a literature review.

Beshay SM, Rivera G, Balthasar J, Florea N.

Int J Pharm Compd. 2015 Jan-Feb;19(1):6-12. Review.

PMID:
25902622
22.

Assessments of antibody biodistribution.

Glassman PM, Abuqayyas L, Balthasar JP.

J Clin Pharmacol. 2015 Mar;55 Suppl 3:S29-38. doi: 10.1002/jcph.365. Review.

PMID:
25707961
23.

Evaluation of near infrared fluorescent labeling of monoclonal antibodies as a tool for tissue distribution.

Conner KP, Rock BM, Kwon GK, Balthasar JP, Abuqayyas L, Wienkers LC, Rock DA.

Drug Metab Dispos. 2014 Nov;42(11):1906-13. doi: 10.1124/dmd.114.060319. Epub 2014 Sep 10. Erratum in: Drug Metab Dispos. 2015 Jan;43(1):53.

24.

Combination of antibody targeting and PTD-mediated intracellular toxin delivery for colorectal cancer therapy.

Shin MC, Zhang J, Ah Min K, Lee K, Moon C, Balthasar JP, Yang VC.

J Control Release. 2014 Nov 28;194:197-210. doi: 10.1016/j.jconrel.2014.08.030. Epub 2014 Sep 7.

25.

Mechanistic considerations for the use of monoclonal antibodies for cancer therapy.

Glassman PM, Balthasar JP.

Cancer Biol Med. 2014 Mar;11(1):20-33. doi: 10.7497/j.issn.2095-3941.2014.01.002. Review.

26.

Effects of calibration approaches on the accuracy for LC-MS targeted quantification of therapeutic protein.

Nouri-Nigjeh E, Zhang M, Ji T, Yu H, An B, Duan X, Balthasar J, Johnson RW, Qu J.

Anal Chem. 2014 Apr 1;86(7):3575-84. doi: 10.1021/ac5001477. Epub 2014 Mar 21.

27.

PK/TD modeling for prediction of the effects of 8C2, an anti-topotecan mAb, on topotecan-induced toxicity in mice.

Shah DK, Balthasar JP.

Int J Pharm. 2014 Apr 25;465(1-2):228-38. doi: 10.1016/j.ijpharm.2014.01.038. Epub 2014 Feb 6.

28.

Predicting the effects of 8C2, a monoclonal anti-topotecan antibody, on plasma and tissue disposition of topotecan.

Shah DK, Balthasar JP.

J Pharmacokinet Pharmacodyn. 2014 Feb;41(1):55-69. doi: 10.1007/s10928-013-9346-9. Epub 2013 Dec 25.

29.

Investigation of the influence of nephropathy on monoclonal antibody disposition: a pharmacokinetic study in a mouse model of diabetic nephropathy.

Engler FA, Zheng B, Balthasar JP.

Pharm Res. 2014 May;31(5):1185-93. doi: 10.1007/s11095-013-1241-y. Epub 2013 Nov 8.

PMID:
24203494
30.

Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies.

Cao Y, Balthasar JP, Jusko WJ.

J Pharmacokinet Pharmacodyn. 2013 Oct;40(5):597-607. doi: 10.1007/s10928-013-9332-2. Epub 2013 Aug 31.

31.

Application of knockout mouse models to investigate the influence of FcγR on the pharmacokinetics and anti-platelet effects of MWReg30, a monoclonal anti-GPIIb antibody.

Abuqayyas L, Zhang X, Balthasar JP.

Int J Pharm. 2013 Feb 28;444(1-2):185-92. doi: 10.1016/j.ijpharm.2013.01.001. Epub 2013 Jan 28.

32.

Application of PBPK modeling to predict monoclonal antibody disposition in plasma and tissues in mouse models of human colorectal cancer.

Abuqayyas L, Balthasar JP.

J Pharmacokinet Pharmacodyn. 2012 Dec;39(6):683-710. doi: 10.1007/s10928-012-9279-8. Epub 2012 Nov 27.

33.

Application of knockout mouse models to investigate the influence of FcγR on the tissue distribution and elimination of 8C2, a murine IgG1 monoclonal antibody.

Abuqayyas L, Balthasar JP.

Int J Pharm. 2012 Dec 15;439(1-2):8-16. doi: 10.1016/j.ijpharm.2012.09.042. Epub 2012 Sep 24.

PMID:
23018115
34.

Evaluation of a catenary PBPK model for predicting the in vivo disposition of mAbs engineered for high-affinity binding to FcRn.

Chen Y, Balthasar JP.

AAPS J. 2012 Dec;14(4):850-9. doi: 10.1208/s12248-012-9395-9. Epub 2012 Sep 7.

35.

Investigation of the role of FcγR and FcRn in mAb distribution to the brain.

Abuqayyas L, Balthasar JP.

Mol Pharm. 2013 May 6;10(5):1505-13. doi: 10.1021/mp300214k. Epub 2012 Aug 23.

PMID:
22838637
36.
37.

Pharmacokinetic mAb-mAb interaction: anti-VEGF mAb decreases the distribution of anti-CEA mAb into colorectal tumor xenografts.

Abuqayyas L, Balthasar JP.

AAPS J. 2012 Sep;14(3):445-55. doi: 10.1208/s12248-012-9357-2. Epub 2012 Apr 18.

39.

AAPS workshop report: strategies to address therapeutic protein-drug interactions during clinical development.

Girish S, Martin SW, Peterson MC, Zhang LK, Zhao H, Balthasar J, Evers R, Zhou H, Zhu M, Klunk L, Han C, Berglund EG, Huang SM, Joshi A.

AAPS J. 2011 Sep;13(3):405-16. doi: 10.1208/s12248-011-9285-6. Epub 2011 Jun 1.

40.

Evaluation of combined bevacizumab and intraperitoneal carboplatin or paclitaxel therapy in a mouse model of ovarian cancer.

Shah DK, Veith J, Bernacki RJ, Balthasar JP.

Cancer Chemother Pharmacol. 2011 Oct;68(4):951-8. doi: 10.1007/s00280-011-1566-3. Epub 2011 Feb 9.

PMID:
21305289
41.

Physiologically based pharmacokinetic model for topotecan in mice.

Shah DK, Balthasar JP.

J Pharmacokinet Pharmacodyn. 2011 Feb;38(1):121-42. doi: 10.1007/s10928-010-9181-1. Epub 2010 Nov 20.

PMID:
21104004
42.

Prediction of human pharmacokinetics and tissue distribution of apicidin, a potent histone deacetylase inhibitor, by physiologically based pharmacokinetic modeling.

Shin BS, Bulitta JB, Balthasar JP, Kim M, Choi Y, Yoo SD.

Cancer Chemother Pharmacol. 2011 Aug;68(2):465-75. doi: 10.1007/s00280-010-1502-y. Epub 2010 Nov 11.

PMID:
21069337
43.

An ELISA for quantification of T84.66, a monoclonal anti-CEA antibody, in mouse plasma.

Urva SR, Yang VC, Balthasar JP.

J Immunoassay Immunochem. 2010;31(1):1-9. doi: 10.1080/15321810903404772.

PMID:
20391013
45.

Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody.

Urva SR, Yang VC, Balthasar JP.

J Pharm Sci. 2010 Mar;99(3):1582-600. doi: 10.1002/jps.21918.

46.

Development and validation of an enzyme linked immunosorbent assay for the quantification of carcinoembryonic antigen in mouse plasma.

Urva SR, Yang VC, Balthasar JP.

J Immunoassay Immunochem. 2009;30(4):418-27. doi: 10.1080/15321810903188227.

PMID:
19739015
47.

Investigation of the influence of FcRn on the distribution of IgG to the brain.

Garg A, Balthasar JP.

AAPS J. 2009 Sep;11(3):553-7. doi: 10.1208/s12248-009-9129-9. Epub 2009 Jul 28.

48.

Prediction of drug bioavailability in humans using immobilized artificial membrane phosphatidylcholine column chromatography and in vitro hepatic metabolic clearance.

Shin BS, Yoon CH, Balthasar JP, Choi BY, Hong SH, Kim HJ, Lee JB, Hwang SW, Yoo SD.

Biomed Chromatogr. 2009 Jul;23(7):764-9. doi: 10.1002/bmc.1182.

PMID:
19296531
49.

Sensitive high performance liquid chromatographic assay for assessment of doxorubicin pharmacokinetics in mouse plasma and tissues.

Urva SR, Shin BS, Yang VC, Balthasar JP.

J Chromatogr B Analyt Technol Biomed Life Sci. 2009 Mar 15;877(8-9):837-41. doi: 10.1016/j.jchromb.2009.02.018. Epub 2009 Feb 11.

PMID:
19246257
50.

Use of an anti-vascular endothelial growth factor antibody in a pharmacokinetic strategy to increase the efficacy of intraperitoneal chemotherapy.

Shah DK, Shin BS, Veith J, Tóth K, Bernacki RJ, Balthasar JP.

J Pharmacol Exp Ther. 2009 May;329(2):580-91. doi: 10.1124/jpet.108.149443. Epub 2009 Feb 20.

Supplemental Content

Loading ...
Support Center