Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 42

1.

ZFN, TALEN and CRISPR-Cas9 mediated homology directed gene insertion in Arabidopsis: A disconnect between somatic and germinal cells.

Shan Q, Baltes NJ, Atkins P, Kirkland ER, Zhang Y, Baller JA, Lowder LG, Malzahn AA, Haugner JC 3rd, Seelig B, Voytas DF, Qi Y.

J Genet Genomics. 2018 Dec 20;45(12):681-684. doi: 10.1016/j.jgg.2018.07.011. Epub 2018 Oct 10. No abstract available.

PMID:
30598393
2.

Genome Engineering and Agriculture: Opportunities and Challenges.

Baltes NJ, Gil-Humanes J, Voytas DF.

Prog Mol Biol Transl Sci. 2017;149:1-26. doi: 10.1016/bs.pmbts.2017.03.011. Epub 2017 May 3. Review.

PMID:
28712492
3.

Validating Genome-Wide Association Candidates Controlling Quantitative Variation in Nodulation.

Curtin SJ, Tiffin P, Guhlin J, Trujillo DI, Burghart LT, Atkins P, Baltes NJ, Denny R, Voytas DF, Stupar RM, Young ND.

Plant Physiol. 2017 Feb;173(2):921-931. doi: 10.1104/pp.16.01923. Epub 2017 Jan 5.

4.

High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9.

Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sánchez-León S, Baltes NJ, Starker C, Barro F, Gao C, Voytas DF.

Plant J. 2017 Mar;89(6):1251-1262. doi: 10.1111/tpj.13446. Epub 2017 Feb 13.

5.

Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil.

Demorest ZL, Coffman A, Baltes NJ, Stoddard TJ, Clasen BM, Luo S, Retterath A, Yabandith A, Gamo ME, Bissen J, Mathis L, Voytas DF, Zhang F.

BMC Plant Biol. 2016 Oct 13;16(1):225.

6.

Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases.

Butler NM, Baltes NJ, Voytas DF, Douches DS.

Front Plant Sci. 2016 Jul 21;7:1045. doi: 10.3389/fpls.2016.01045. eCollection 2016.

7.

Targeted Mutagenesis in Plant Cells through Transformation of Sequence-Specific Nuclease mRNA.

Stoddard TJ, Clasen BM, Baltes NJ, Demorest ZL, Voytas DF, Zhang F, Luo S.

PLoS One. 2016 May 13;11(5):e0154634. doi: 10.1371/journal.pone.0154634. eCollection 2016.

8.

High-frequency, precise modification of the tomato genome.

Čermák T, Baltes NJ, Čegan R, Zhang Y, Voytas DF.

Genome Biol. 2015 Nov 6;16:232. doi: 10.1186/s13059-015-0796-9.

9.

A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation.

Lowder LG, Zhang D, Baltes NJ, Paul JW 3rd, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y.

Plant Physiol. 2015 Oct;169(2):971-85. doi: 10.1104/pp.15.00636. Epub 2015 Aug 21.

10.

Non-transgenic Plant Genome Editing Using Purified Sequence-Specific Nucleases.

Luo S, Li J, Stoddard TJ, Baltes NJ, Demorest ZL, Clasen BM, Coffman A, Retterath A, Mathis L, Voytas DF, Zhang F.

Mol Plant. 2015 Sep;8(9):1425-7. doi: 10.1016/j.molp.2015.05.012. Epub 2015 Jun 12. No abstract available.

11.

Improving cold storage and processing traits in potato through targeted gene knockout.

Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes NJ, Mathis L, Voytas DF, Zhang F.

Plant Biotechnol J. 2016 Jan;14(1):169-76. doi: 10.1111/pbi.12370. Epub 2015 Apr 7.

12.

Efficient Virus-Mediated Genome Editing in Plants Using the CRISPR/Cas9 System.

Ali Z, Abul-faraj A, Li L, Ghosh N, Piatek M, Mahjoub A, Aouida M, Piatek A, Baltes NJ, Voytas DF, Dinesh-Kumar S, Mahfouz MM.

Mol Plant. 2015 Aug;8(8):1288-91. doi: 10.1016/j.molp.2015.02.011. Epub 2015 Mar 6. No abstract available.

13.

Enabling plant synthetic biology through genome engineering.

Baltes NJ, Voytas DF.

Trends Biotechnol. 2015 Feb;33(2):120-31. doi: 10.1016/j.tibtech.2014.11.008. Epub 2014 Dec 12. Review.

PMID:
25496918
14.

Multiple headspace extraction for gas detection in ionic liquids.

Müller D, Fühl M, Pinkwart K, Baltes N.

J Chromatogr A. 2014 Dec 5;1371:15-19. doi: 10.1016/j.chroma.2014.10.017. Epub 2014 Oct 16.

PMID:
25458524
15.

Differential antitumor activity of aflibercept and bevacizumab in patient-derived xenograft models of colorectal cancer.

Chiron M, Bagley RG, Pollard J, Mankoo PK, Henry C, Vincent L, Geslin C, Baltes N, Bergstrom DA.

Mol Cancer Ther. 2014 Jun;13(6):1636-44. doi: 10.1158/1535-7163.MCT-13-0753. Epub 2014 Mar 31.

16.

DNA replicons for plant genome engineering.

Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF.

Plant Cell. 2014 Jan;26(1):151-63. doi: 10.1105/tpc.113.119792. Epub 2014 Jan 17.

17.

Trace detection of oxygen--ionic liquids in gas sensor design.

Baltes N, Beyle F, Freiner S, Geier F, Joos M, Pinkwart K, Rabenecker P.

Talanta. 2013 Nov 15;116:474-81. doi: 10.1016/j.talanta.2013.07.001. Epub 2013 Jul 11.

PMID:
24148432
18.

Tailor-made mutations in Arabidopsis using zinc finger nucleases.

Qi Y, Starker CG, Zhang F, Baltes NJ, Voytas DF.

Methods Mol Biol. 2014;1062:193-209. doi: 10.1007/978-1-62703-580-4_10.

PMID:
24057367
19.

Targeted mutagenesis for functional analysis of gene duplication in legumes.

Curtin SJ, Anderson JE, Starker CG, Baltes NJ, Mani D, Voytas DF, Stupar RM.

Methods Mol Biol. 2013;1069:25-42. doi: 10.1007/978-1-62703-613-9_3.

PMID:
23996306
20.

Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases.

Qi Y, Li X, Zhang Y, Starker CG, Baltes NJ, Zhang F, Sander JD, Reyon D, Joung JK, Voytas DF.

G3 (Bethesda). 2013 Oct 3;3(10):1707-15. doi: 10.1534/g3.113.006270.

21.

Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases.

Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, Reyon D, Dahlborg EJ, Goodwin MJ, Coffman AP, Dobbs D, Joung JK, Voytas DF, Stupar RM.

Plant Physiol. 2011 Jun;156(2):466-73. doi: 10.1104/pp.111.172981. Epub 2011 Apr 4.

22.

Cryptococcal cell morphology affects host cell interactions and pathogenicity.

Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chrétien F, Heitman J, Dromer F, Nielsen K.

PLoS Pathog. 2010 Jun 17;6(6):e1000953. doi: 10.1371/journal.ppat.1000953. Erratum in: PLoS Pathog. 2010;6(6). doi: 10.1371/annotation/1b59fd9e-9ac9-4ea8-a083-14c413c80b03.

23.

An Antarctic hot spot for fungi at Shackleton's historic hut on Cape Royds.

Blanchette RA, Held BW, Arenz BE, Jurgens JA, Baltes NJ, Duncan SM, Farrell RL.

Microb Ecol. 2010 Jul;60(1):29-38. doi: 10.1007/s00248-010-9664-z. Epub 2010 Apr 13.

PMID:
20386896
24.

An isogenic Actinobacillus pleuropneumoniae AasP mutant exhibits altered biofilm formation but retains virulence.

Tegetmeyer HE, Fricke K, Baltes N.

Vet Microbiol. 2009 Jun 12;137(3-4):392-6. doi: 10.1016/j.vetmic.2009.01.026. Epub 2009 Jan 24.

PMID:
19217220
25.

Identification of novel potential virulence-associated factors in Haemophilus parasuis.

Sack M, Baltes N.

Vet Microbiol. 2009 May 12;136(3-4):382-6. doi: 10.1016/j.vetmic.2008.11.008. Epub 2008 Nov 24.

PMID:
19117700
26.
27.

[Study of the virulence of Actinobacillus pleuropneumoniae in finishing pigs as a basis for vaccination development].

Hennig-Pauka I, Baltes N, Jacobsen I, Stratmann-Selke J, Gerlach GF, Selbitz HJ, Waldmann KH.

Berl Munch Tierarztl Wochenschr. 2008 May-Jun;121(5-6):189-97. German.

PMID:
18557522
28.

ISApl1, a novel insertion element of Actinobacillus pleuropneumoniae, prevents ApxIV-based serological detection of serotype 7 strain AP76.

Tegetmeyer HE, Jones SC, Langford PR, Baltes N.

Vet Microbiol. 2008 Apr 30;128(3-4):342-53. Epub 2007 Nov 4.

PMID:
18065168
29.
30.

Development of a DIVA subunit vaccine against Actinobacillus pleuropneumoniae infection.

Maas A, Meens J, Baltes N, Hennig-Pauka I, Gerlach GF.

Vaccine. 2006 Nov 30;24(49-50):7226-37. Epub 2006 Jul 7.

PMID:
17027123
31.
32.

Differential expression of non-cytoplasmic Actinobacillus pleuropneumoniae proteins induced by addition of bronchoalveolar lavage fluid.

Jacobsen ID, Meens J, Baltes N, Gerlach GF.

Vet Microbiol. 2005 Aug 30;109(3-4):245-56.

PMID:
15979826
33.

Enzymes involved in anaerobic respiration appear to play a role in Actinobacillus pleuropneumoniae virulence.

Jacobsen I, Hennig-Pauka I, Baltes N, Trost M, Gerlach GF.

Infect Immun. 2005 Jan;73(1):226-34.

35.

Imaging concentration profiles of redox-active species with nanometric amperometric probes: effect of natural convection on transport at microdisk electrodes.

Baltes N, Thouin L, Amatore C, Heinze J.

Angew Chem Int Ed Engl. 2004 Mar 5;43(11):1431-5. No abstract available.

PMID:
15368426
36.
37.

Identification of dimethyl sulfoxide reductase in Actinobacillus pleuropneumoniae and its role in infection.

Baltes N, Hennig-Pauka I, Jacobsen I, Gruber AD, Gerlach GF.

Infect Immun. 2003 Dec;71(12):6784-92.

38.

Actinobacillus pleuropneumoniae serotype 7 siderophore receptor FhuA is not required for virulence.

Baltes N, Tonpitak W, Hennig-Pauka I, Gruber AD, Gerlach GF.

FEMS Microbiol Lett. 2003 Mar 14;220(1):41-8.

39.

Construction of an Actinobacillus pleuropneumoniae serotype 2 prototype live negative-marker vaccine.

Tonpitak W, Baltes N, Hennig-Pauka I, Gerlach GF.

Infect Immun. 2002 Dec;70(12):7120-5.

40.

Both transferrin binding proteins are virulence factors in Actinobacillus pleuropneumoniae serotype 7 infection.

Baltes N, Hennig-Pauka I, Gerlach GF.

FEMS Microbiol Lett. 2002 Apr 9;209(2):283-7.

41.

Actinobacillus pleuropneumoniae iron transport and urease activity: effects on bacterial virulence and host immune response.

Baltes N, Tonpitak W, Gerlach GF, Hennig-Pauka I, Hoffmann-Moujahid A, Ganter M, Rothkötter HJ.

Infect Immun. 2001 Jan;69(1):472-8.

Supplemental Content

Loading ...
Support Center