Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 39

1.

Dual-mechanism ERK1/2 inhibitors exploit a distinct binding mode to block phosphorylation and nuclear accumulation of ERK1/2.

Kidger AM, Munck JM, Saini HK, Balmanno K, Minihane E, Courtin A, Graham B, O'Reilly M, Odle R, Cook SJ.

Mol Cancer Ther. 2019 Nov 20. pii: molcanther.0505.2019. doi: 10.1158/1535-7163.MCT-19-0505. [Epub ahead of print]

PMID:
31748345
2.

An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis.

Odle RI, Walker SA, Oxley D, Kidger AM, Balmanno K, Gilley R, Okkenhaug H, Florey O, Ktistakis NT, Cook SJ.

Mol Cell. 2019 Nov 6. pii: S1097-2765(19)30794-4. doi: 10.1016/j.molcel.2019.10.016. [Epub ahead of print]

3.

MEK1/2 inhibitor withdrawal reverses acquired resistance driven by BRAFV600E amplification whereas KRASG13D amplification promotes EMT-chemoresistance.

Sale MJ, Balmanno K, Saxena J, Ozono E, Wojdyla K, McIntyre RE, Gilley R, Woroniuk A, Howarth KD, Hughes G, Dry JR, Arends MJ, Caro P, Oxley D, Ashton S, Adams DJ, Saez-Rodriguez J, Smith PD, Cook SJ.

Nat Commun. 2019 May 2;10(1):2030. doi: 10.1038/s41467-019-09438-w.

4.

Over-expressed, N-terminally truncated BRAF is detected in the nucleus of cells with nuclear phosphorylated MEK and ERK.

Hey F, Andreadi C, Noble C, Patel B, Jin H, Kamata T, Straatman K, Luo J, Balmanno K, Jones DTW, Collins VP, Cook SJ, Caunt CJ, Pritchard C.

Heliyon. 2018 Dec 20;4(12):e01065. doi: 10.1016/j.heliyon.2018.e01065. eCollection 2018 Dec.

5.

ERK1/2 signalling protects against apoptosis following endoplasmic reticulum stress but cannot provide long-term protection against BAX/BAK-independent cell death.

Darling NJ, Balmanno K, Cook SJ.

PLoS One. 2017 Sep 20;12(9):e0184907. doi: 10.1371/journal.pone.0184907. eCollection 2017.

6.

RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence.

Galloway A, Saveliev A, Łukasiak S, Hodson DJ, Bolland D, Balmanno K, Ahlfors H, Monzón-Casanova E, Mannurita SC, Bell LS, Andrews S, Díaz-Muñoz MD, Cook SJ, Corcoran A, Turner M.

Science. 2016 Apr 22;352(6284):453-9. doi: 10.1126/science.aad5978.

7.

Identification of DYRK1B as a substrate of ERK1/2 and characterisation of the kinase activity of DYRK1B mutants from cancer and metabolic syndrome.

Ashford AL, Dunkley TP, Cockerill M, Rowlinson RA, Baak LM, Gallo R, Balmanno K, Goodwin LM, Ward RA, Lochhead PA, Guichard S, Hudson K, Cook SJ.

Cell Mol Life Sci. 2016 Feb;73(4):883-900. doi: 10.1007/s00018-015-2032-x. Epub 2015 Sep 7.

8.

Adaptation to mTOR kinase inhibitors by amplification of eIF4E to maintain cap-dependent translation.

Cope CL, Gilley R, Balmanno K, Sale MJ, Howarth KD, Hampson M, Smith PD, Guichard SM, Cook SJ.

J Cell Sci. 2014 Feb 15;127(Pt 4):788-800. doi: 10.1242/jcs.137588. Epub 2013 Dec 20.

9.

Adaptation to chronic mTOR inhibition in cancer and in aging.

Gilley R, Balmanno K, Cope CL, Cook SJ.

Biochem Soc Trans. 2013 Aug;41(4):956-61. doi: 10.1042/BST20130080. Review.

PMID:
23863163
10.

Tumour cell responses to new fibroblast growth factor receptor tyrosine kinase inhibitors and identification of a gatekeeper mutation in FGFR3 as a mechanism of acquired resistance.

Chell V, Balmanno K, Little AS, Wilson M, Andrews S, Blockley L, Hampson M, Gavine PR, Cook SJ.

Oncogene. 2013 Jun 20;32(25):3059-70. doi: 10.1038/onc.2012.319. Epub 2012 Aug 6.

PMID:
22869148
11.

Tumour cell responses to MEK1/2 inhibitors: acquired resistance and pathway remodelling.

Little AS, Balmanno K, Sale MJ, Smith PD, Cook SJ.

Biochem Soc Trans. 2012 Feb;40(1):73-8. doi: 10.1042/BST20110647.

PMID:
22260668
12.

Regulation of MEK/ERK pathway output by subcellular localization of B-Raf.

Andreadi C, Noble C, Patel B, Jin H, Aguilar Hernandez MM, Balmanno K, Cook SJ, Pritchard C.

Biochem Soc Trans. 2012 Feb;40(1):67-72. doi: 10.1042/BST20110621. Review.

PMID:
22260667
13.

CDK1, not ERK1/2 or ERK5, is required for mitotic phosphorylation of BIMEL.

Gilley R, Lochhead PA, Balmanno K, Oxley D, Clark J, Cook SJ.

Cell Signal. 2012 Jan;24(1):170-80. doi: 10.1016/j.cellsig.2011.08.018. Epub 2011 Sep 8.

PMID:
21924351
15.

Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells.

Little AS, Balmanno K, Sale MJ, Newman S, Dry JR, Hampson M, Edwards PA, Smith PD, Cook SJ.

Sci Signal. 2011 Mar 29;4(166):ra17. doi: 10.1126/scisignal.2001752. Erratum in: Sci Signal. 2011;4(170). doi:10.1126/scisignal.4170er2. Corrected and republished in: Sci Signal. 2011;4(170):er2.

16.

Apoptosis and autophagy: BIM as a mediator of tumour cell death in response to oncogene-targeted therapeutics.

Gillings AS, Balmanno K, Wiggins CM, Johnson M, Cook SJ.

FEBS J. 2009 Nov;276(21):6050-62. doi: 10.1111/j.1742-4658.2009.07329.x. Epub 2009 Sep 29. Review.

17.

Intrinsic resistance to the MEK1/2 inhibitor AZD6244 (ARRY-142886) is associated with weak ERK1/2 signalling and/or strong PI3K signalling in colorectal cancer cell lines.

Balmanno K, Chell SD, Gillings AS, Hayat S, Cook SJ.

Int J Cancer. 2009 Nov 15;125(10):2332-41. doi: 10.1002/ijc.24604.

18.

Tumour cell survival signalling by the ERK1/2 pathway.

Balmanno K, Cook SJ.

Cell Death Differ. 2009 Mar;16(3):368-77. doi: 10.1038/cdd.2008.148. Epub 2008 Oct 10. Review.

19.

Colorectal cancer cells with the BRAF(V600E) mutation are addicted to the ERK1/2 pathway for growth factor-independent survival and repression of BIM.

Wickenden JA, Jin H, Johnson M, Gillings AS, Newson C, Austin M, Chell SD, Balmanno K, Pritchard CA, Cook SJ.

Oncogene. 2008 Dec 4;27(57):7150-61. doi: 10.1038/onc.2008.335. Epub 2008 Sep 22.

20.

ERK1/2 and p38 cooperate to delay progression through G1 by promoting cyclin D1 protein turnover.

Densham RM, Todd DE, Balmanno K, Cook SJ.

Cell Signal. 2008 Nov;20(11):1986-94. doi: 10.1016/j.cellsig.2008.07.005. Epub 2008 Jul 10.

PMID:
18664382
21.

ERK1/2-dependent phosphorylation of BimEL promotes its rapid dissociation from Mcl-1 and Bcl-xL.

Ewings KE, Hadfield-Moorhouse K, Wiggins CM, Wickenden JA, Balmanno K, Gilley R, Degenhardt K, White E, Cook SJ.

EMBO J. 2007 Jun 20;26(12):2856-67. Epub 2007 May 24.

22.

The duration of ERK1/2 activity determines the activation of c-Fos and Fra-1 and the composition and quantitative transcriptional output of AP-1.

Chalmers CJ, Gilley R, March HN, Balmanno K, Cook SJ.

Cell Signal. 2007 Apr;19(4):695-704. Epub 2006 Sep 15.

PMID:
17052890
23.

The conditional kinase DeltaMEKK1:ER* selectively activates the JNK pathway and protects against serum withdrawal-induced cell death.

Molton SA, Weston C, Balmanno K, Newson C, Todd DE, Garner AP, Cook SJ.

Cell Signal. 2005 Nov;17(11):1412-22.

PMID:
15893455
24.

ERK1/2 and p38 cooperate to induce a p21CIP1-dependent G1 cell cycle arrest.

Todd DE, Densham RM, Molton SA, Balmanno K, Newson C, Weston CR, Garner AP, Scott L, Cook SJ.

Oncogene. 2004 Apr 22;23(19):3284-95.

PMID:
14981547
25.

Extracellular signal-regulated kinases 1/2 are serum-stimulated "Bim(EL) kinases" that bind to the BH3-only protein Bim(EL) causing its phosphorylation and turnover.

Ley R, Ewings KE, Hadfield K, Howes E, Balmanno K, Cook SJ.

J Biol Chem. 2004 Mar 5;279(10):8837-47. Epub 2003 Dec 17.

27.
28.

Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim.

Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ.

J Biol Chem. 2003 May 23;278(21):18811-6. Epub 2003 Mar 19.

29.

Activation of ERK1/2 by deltaRaf-1:ER* represses Bim expression independently of the JNK or PI3K pathways.

Weston CR, Balmanno K, Chalmers C, Hadfield K, Molton SA, Ley R, Wagner EF, Cook SJ.

Oncogene. 2003 Mar 6;22(9):1281-93.

PMID:
12618753
30.

Delta MEKK3:ER* activation induces a p38 alpha/beta 2-dependent cell cycle arrest at the G2 checkpoint.

Garner AP, Weston CR, Todd DE, Balmanno K, Cook SJ.

Oncogene. 2002 Nov 21;21(53):8089-104.

31.

Regulation of cell cycle re-entry by growth, survival and stress signalling pathways.

Cook SJ, Balmanno K, Garner A, Millar T, Taverner C, Todd D.

Biochem Soc Trans. 2000 Feb;28(2):233-40. Review.

PMID:
10816134
33.

The relationship between intrinsic thymidylate synthase expression and sensitivity to THYMITAQ in human leukaemia and colorectal carcinoma cell lines.

Estlin EJ, Balmanno K, Calvert AH, Hall AG, Lunec J, Newell DR, Pearson AD, Taylor GA.

Br J Cancer. 1997;76(12):1579-85.

34.

Phase I and pharmacokinetic study of a water-soluble etoposide prodrug, etoposide phosphate (BMY-40481).

Millward MJ, Newell DR, Mummaneni V, Igwemezie LN, Balmanno K, Charlton CJ, Gumbrell L, Lind MJ, Chapman F, Proctor M, et al.

Eur J Cancer. 1995 Dec;31A(13-14):2409-11.

PMID:
8652278
36.

Pharmacokinetics and pharmacodynamics of prolonged oral etoposide in women with metastatic breast cancer.

Millward MJ, Newell DR, Yuen K, Matthews JP, Balmanno K, Charlton CJ, Gumbrell L, Lind MJ, Chapman F, Proctor M, et al.

Cancer Chemother Pharmacol. 1995;37(1-2):161-7.

PMID:
7497587
37.

Carboplatin pharmacokinetics in children: the development of a pediatric dosing formula. The United Kingdom Children's Cancer Study Group.

Newell DR, Pearson AD, Balmanno K, Price L, Wyllie RA, Keir M, Calvert AH, Lewis IJ, Pinkerton CR, Stevens MC.

J Clin Oncol. 1993 Dec;11(12):2314-23.

PMID:
8246021
38.

Phase II trial of trimelamol in refractory ovarian cancer.

Judson IR, Calvert AH, Gore ME, Balmanno K, Gumbrell LA, Perren T, Wiltshaw E.

Br J Cancer. 1991 Feb;63(2):311-3.

39.

Estimation of the in vitro and in vivo inhibitory effects of antifolates upon thymidylate synthase (TS) in whole cells.

Taylor GA, Jackman AL, Balmanno K, Hughes LR, Calvert AH.

Adv Exp Med Biol. 1989;253B:383-8. No abstract available.

PMID:
2610126

Supplemental Content

Loading ...
Support Center