Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 52

1.

Photosystem II antenna complexes CP26 and CP29 are essential for nonphotochemical quenching in Chlamydomonas reinhardtii.

Cazzaniga S, Kim M, Bellamoli F, Jeong J, Lee S, Perozeni F, Pompa A, Jin E, Ballottari M.

Plant Cell Environ. 2020 Feb;43(2):496-509. doi: 10.1111/pce.13680. Epub 2019 Dec 8.

PMID:
31724187
2.

Retraction Note: Increased biomass productivity in green algae by tuning non-photochemical quenching.

Berteotti S, Ballottari M, Bassi R.

Sci Rep. 2019 Sep 6;9(1):13026. doi: 10.1038/s41598-019-48482-w.

3.

Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions.

Cecchin M, Marcolungo L, Rossato M, Girolomoni L, Cosentino E, Cuine S, Li-Beisson Y, Delledonne M, Ballottari M.

Plant J. 2019 Dec;100(6):1289-1305. doi: 10.1111/tpj.14508. Epub 2019 Sep 24.

PMID:
31437318
4.

Encapsulation of Photosystem I in Organic Microparticles Increases Its Photochemical Activity and Stability for Ex Vivo Photocatalysis.

Cherubin A, Destefanis L, Bovi M, Perozeni F, Bargigia I, de la Cruz Valbuena G, D'Andrea C, Romeo A, Ballottari M, Perduca M.

ACS Sustain Chem Eng. 2019 Jun 17;7(12):10435-10444. doi: 10.1021/acssuschemeng.9b00738. Epub 2019 May 16.

5.

Molecular Mechanisms of Nonphotochemical Quenching in the LHCSR3 Protein of Chlamydomonas reinhardtii.

de la Cruz Valbuena G, V A Camargo F, Borrego-Varillas R, Perozeni F, D'Andrea C, Ballottari M, Cerullo G.

J Phys Chem Lett. 2019 May 16;10(10):2500-2505. doi: 10.1021/acs.jpclett.9b01184. Epub 2019 May 3.

6.

In vitro and in vivo investigation of chlorophyll binding sites involved in non-photochemical quenching in Chlamydomonas reinhardtii.

Perozeni F, Cazzaniga S, Ballottari M.

Plant Cell Environ. 2019 Aug;42(8):2522-2535. doi: 10.1111/pce.13566. Epub 2019 May 9.

7.

LHCSR3 is a nonphotochemical quencher of both photosystems in Chlamydomonas reinhardtii.

Girolomoni L, Cazzaniga S, Pinnola A, Perozeni F, Ballottari M, Bassi R.

Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4212-4217. doi: 10.1073/pnas.1809812116. Epub 2019 Feb 19.

8.

Molecular basis of autotrophic vs mixotrophic growth in Chlorella sorokiniana.

Cecchin M, Benfatto S, Griggio F, Mori A, Cazzaniga S, Vitulo N, Delledonne M, Ballottari M.

Sci Rep. 2018 Apr 24;8(1):6465. doi: 10.1038/s41598-018-24979-8.

9.

Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach.

Perri A, Gaida JH, Farina A, Preda F, Viola D, Ballottari M, Hauer J, De Silvestri S, D'Andrea C, Cerullo G, Polli D.

Opt Express. 2018 Feb 5;26(3):2270-2279. doi: 10.1364/OE.26.002270.

10.

LHCSR Expression under HSP70/RBCS2 Promoter as a Strategy to Increase Productivity in Microalgae.

Perozeni F, Stella GR, Ballottari M.

Int J Mol Sci. 2018 Jan 5;19(1). pii: E155. doi: 10.3390/ijms19010155.

11.

Functional analysis of photosynthetic pigment binding complexes in the green alga Haematococcus pluvialis reveals distribution of astaxanthin in Photosystems.

Mascia F, Girolomoni L, Alcocer MJP, Bargigia I, Perozeni F, Cazzaniga S, Cerullo G, D'Andrea C, Ballottari M.

Sci Rep. 2017 Nov 24;7(1):16319. doi: 10.1038/s41598-017-16641-6.

12.

Functional modulation of LHCSR1 protein from Physcomitrella patens by zeaxanthin binding and low pH.

Pinnola A, Ballottari M, Bargigia I, Alcocer M, D'Andrea C, Cerullo G, Bassi R.

Sci Rep. 2017 Sep 11;7(1):11158. doi: 10.1038/s41598-017-11101-7.

13.

Impaired Mitochondrial Transcription Termination Disrupts the Stromal Redox Poise in Chlamydomonas.

Uhmeyer A, Cecchin M, Ballottari M, Wobbe L.

Plant Physiol. 2017 Jul;174(3):1399-1419. doi: 10.1104/pp.16.00946. Epub 2017 May 12.

14.

The function of LHCBM4/6/8 antenna proteins in Chlamydomonas reinhardtii.

Girolomoni L, Ferrante P, Berteotti S, Giuliano G, Bassi R, Ballottari M.

J Exp Bot. 2017 Jan 1;68(3):627-641. doi: 10.1093/jxb/erw462.

15.

Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens.

Pinnola A, Staleva-Musto H, Capaldi S, Ballottari M, Bassi R, Polívka T.

Biochim Biophys Acta. 2016 Dec;1857(12):1870-1878. doi: 10.1016/j.bbabio.2016.09.001. Epub 2016 Sep 7.

16.

Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste.

Zuliani L, Frison N, Jelic A, Fatone F, Bolzonella D, Ballottari M.

Int J Mol Sci. 2016 Oct 10;17(10). pii: E1692.

17.

Observation of Electronic Excitation Transfer Through Light Harvesting Complex II Using Two-Dimensional Electronic-Vibrational Spectroscopy.

Lewis NHC, Gruenke NL, Oliver TAA, Ballottari M, Bassi R, Fleming GR.

J Phys Chem Lett. 2016 Oct 20;7(20):4197-4206. doi: 10.1021/acs.jpclett.6b02280. Epub 2016 Oct 10.

18.

LHCII can substitute for LHCI as an antenna for photosystem I but with reduced light-harvesting capacity.

Bressan M, Dall'Osto L, Bargigia I, Alcocer MJ, Viola D, Cerullo G, D'Andrea C, Bassi R, Ballottari M.

Nat Plants. 2016 Aug 26;2:16131. doi: 10.1038/nplants.2016.131.

PMID:
27564313
19.

Increased biomass productivity in green algae by tuning non-photochemical quenching.

Berteotti S, Ballottari M, Bassi R.

Sci Rep. 2016 Feb 18;6:21339. doi: 10.1038/srep21339. Retraction in: Sci Rep. 2019 Sep 6;9(1):13026.

20.

Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii.

Ballottari M, Truong TB, De Re E, Erickson E, Stella GR, Fleming GR, Bassi R, Niyogi KK.

J Biol Chem. 2016 Apr 1;291(14):7334-46. doi: 10.1074/jbc.M115.704601. Epub 2016 Jan 27.

21.

High light-dependent phosphorylation of photosystem II inner antenna CP29 in monocots is STN7 independent and enhances nonphotochemical quenching.

Betterle N, Ballottari M, Baginsky S, Bassi R.

Plant Physiol. 2015 Feb;167(2):457-71. doi: 10.1104/pp.114.252379. Epub 2014 Dec 10.

22.

Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor.

Cazzaniga S, Dall'Osto L, Szaub J, Scibilia L, Ballottari M, Purton S, Bassi R.

Biotechnol Biofuels. 2014 Oct 21;7(1):157. doi: 10.1186/s13068-014-0157-z. eCollection 2014.

23.

Non-photochemical quenching and xanthophyll cycle activities in six green algal species suggest mechanistic differences in the process of excess energy dissipation.

Quaas T, Berteotti S, Ballottari M, Flieger K, Bassi R, Wilhelm C, Goss R.

J Plant Physiol. 2015 Jan 1;172:92-103. doi: 10.1016/j.jplph.2014.07.023. Epub 2014 Sep 3.

PMID:
25240793
24.

Integration of carbon assimilation modes with photosynthetic light capture in the green alga Chlamydomonas reinhardtii.

Berger H, Blifernez-Klassen O, Ballottari M, Bassi R, Wobbe L, Kruse O.

Mol Plant. 2014 Oct;7(10):1545-59. doi: 10.1093/mp/ssu083. Epub 2014 Jul 18.

25.

Regulation of photosystem I light harvesting by zeaxanthin.

Ballottari M, Alcocer MJ, D'Andrea C, Viola D, Ahn TK, Petrozza A, Polli D, Fleming GR, Cerullo G, Bassi R.

Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):E2431-8. doi: 10.1073/pnas.1404377111. Epub 2014 May 28.

26.

Light-Harvesting Complex Protein LHCBM9 Is Critical for Photosystem II Activity and Hydrogen Production in Chlamydomonas reinhardtii.

Grewe S, Ballottari M, Alcocer M, D'Andrea C, Blifernez-Klassen O, Hankamer B, Mussgnug JH, Bassi R, Kruse O.

Plant Cell. 2014 Apr;26(4):1598-1611. Epub 2014 Apr 4.

27.

Chlorophyll triplet quenching and photoprotection in the higher plant monomeric antenna protein Lhcb5.

Ballottari M, Mozzo M, Girardon J, Hienerwadel R, Bassi R.

J Phys Chem B. 2013 Sep 26;117(38):11337-48. doi: 10.1021/jp402977y. Epub 2013 Jul 8.

PMID:
23786371
28.

Elucidation of the timescales and origins of quantum electronic coherence in LHCII.

Schlau-Cohen GS, Ishizaki A, Calhoun TR, Ginsberg NS, Ballottari M, Bassi R, Fleming GR.

Nat Chem. 2012 Mar 25;4(5):389-95. doi: 10.1038/nchem.1303.

PMID:
22522259
29.

LHCBM1 and LHCBM2/7 polypeptides, components of major LHCII complex, have distinct functional roles in photosynthetic antenna system of Chlamydomonas reinhardtii.

Ferrante P, Ballottari M, Bonente G, Giuliano G, Bassi R.

J Biol Chem. 2012 May 11;287(20):16276-88. doi: 10.1074/jbc.M111.316729. Epub 2012 Mar 19.

30.

Acclimation of Chlamydomonas reinhardtii to different growth irradiances.

Bonente G, Pippa S, Castellano S, Bassi R, Ballottari M.

J Biol Chem. 2012 Feb 17;287(8):5833-47. doi: 10.1074/jbc.M111.304279. Epub 2011 Dec 28.

31.

Evolution and functional properties of photosystem II light harvesting complexes in eukaryotes.

Ballottari M, Girardon J, Dall'osto L, Bassi R.

Biochim Biophys Acta. 2012 Jan;1817(1):143-57. doi: 10.1016/j.bbabio.2011.06.005. Epub 2011 Jun 15.

32.

Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy.

Ginsberg NS, Davis JA, Ballottari M, Cheng YC, Bassi R, Fleming GR.

Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):3848-53. doi: 10.1073/pnas.1012054108. Epub 2011 Feb 14.

33.

Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii.

Bonente G, Ballottari M, Truong TB, Morosinotto T, Ahn TK, Fleming GR, Niyogi KK, Bassi R.

PLoS Biol. 2011 Jan 18;9(1):e1000577. doi: 10.1371/journal.pbio.1000577.

34.

Spectroscopic elucidation of uncoupled transition energies in the major photosynthetic light-harvesting complex, LHCII.

Schlau-Cohen GS, Calhoun TR, Ginsberg NS, Ballottari M, Bassi R, Fleming GR.

Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13276-81. doi: 10.1073/pnas.1006230107. Epub 2010 Jul 9.

35.

Identification of the chromophores involved in aggregation-dependent energy quenching of the monomeric photosystem II antenna protein Lhcb5.

Ballottari M, Girardon J, Betterle N, Morosinotto T, Bassi R.

J Biol Chem. 2010 Sep 3;285(36):28309-21. doi: 10.1074/jbc.M110.124115. Epub 2010 Jun 28.

36.

Dynamics of zeaxanthin binding to the photosystem II monomeric antenna protein Lhcb6 (CP24) and modulation of its photoprotection properties.

Betterle N, Ballottari M, Hienerwadel R, Dall'Osto L, Bassi R.

Arch Biochem Biophys. 2010 Dec 1;504(1):67-77. doi: 10.1016/j.abb.2010.05.016. Epub 2010 May 28.

PMID:
20494647
37.

Regulation of plant light harvesting by thermal dissipation of excess energy.

de Bianchi S, Ballottari M, Dall'osto L, Bassi R.

Biochem Soc Trans. 2010 Apr;38(2):651-60. doi: 10.1042/BST0380651. Review.

PMID:
20298238
38.

Quantum coherence enabled determination of the energy landscape in light-harvesting complex II.

Calhoun TR, Ginsberg NS, Schlau-Cohen GS, Cheng YC, Ballottari M, Bassi R, Fleming GR.

J Phys Chem B. 2009 Dec 24;113(51):16291-5. doi: 10.1021/jp908300c.

PMID:
20014871
39.

Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy.

Schlau-Cohen GS, Calhoun TR, Ginsberg NS, Read EL, Ballottari M, Bassi R, van Grondelle R, Fleming GR.

J Phys Chem B. 2009 Nov 19;113(46):15352-63. doi: 10.1021/jp9066586.

PMID:
19856954
40.

Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the Arabidopsis thaliana npq1 mutant.

Li Z, Ahn TK, Avenson TJ, Ballottari M, Cruz JA, Kramer DM, Bassi R, Fleming GR, Keasling JD, Niyogi KK.

Plant Cell. 2009 Jun;21(6):1798-812. doi: 10.1105/tpc.109.066571. Epub 2009 Jun 23.

41.

Antenna complexes protect Photosystem I from photoinhibition.

Alboresi A, Ballottari M, Hienerwadel R, Giacometti GM, Morosinotto T.

BMC Plant Biol. 2009 Jun 9;9:71. doi: 10.1186/1471-2229-9-71.

42.

Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction.

Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall'osto L, Morosinotto T, Bassi R.

J Biol Chem. 2009 May 29;284(22):15255-66. doi: 10.1074/jbc.M808625200. Epub 2009 Mar 23.

43.

Occupancy and functional architecture of the pigment binding sites of photosystem II antenna complex Lhcb5.

Ballottari M, Mozzo M, Croce R, Morosinotto T, Bassi R.

J Biol Chem. 2009 Mar 20;284(12):8103-13. doi: 10.1074/jbc.M808326200. Epub 2009 Jan 7.

44.

Lutein can act as a switchable charge transfer quencher in the CP26 light-harvesting complex.

Avenson TJ, Ahn TK, Niyogi KK, Ballottari M, Bassi R, Fleming GR.

J Biol Chem. 2009 Jan 30;284(5):2830-5. doi: 10.1074/jbc.M807192200. Epub 2008 Nov 6.

45.

Kinetic modeling of charge-transfer quenching in the CP29 minor complex.

Cheng YC, Ahn TK, Avenson TJ, Zigmantas D, Niyogi KK, Ballottari M, Bassi R, Fleming GR.

J Phys Chem B. 2008 Oct 23;112(42):13418-23. doi: 10.1021/jp802730c. Epub 2008 Sep 30.

PMID:
18826191
46.

Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein.

Ahn TK, Avenson TJ, Ballottari M, Cheng YC, Niyogi KK, Bassi R, Fleming GR.

Science. 2008 May 9;320(5877):794-7. doi: 10.1126/science.1154800.

47.

Trap-limited charge separation kinetics in higher plant photosystem I complexes.

Slavov C, Ballottari M, Morosinotto T, Bassi R, Holzwarth AR.

Biophys J. 2008 May 1;94(9):3601-12. doi: 10.1529/biophysj.107.117101. Epub 2008 Jan 25.

48.

Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna.

Avenson TJ, Ahn TK, Zigmantas D, Niyogi KK, Li Z, Ballottari M, Bassi R, Fleming GR.

J Biol Chem. 2008 Feb 8;283(6):3550-8. Epub 2007 Nov 8.

49.

Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation.

Ballottari M, Dall'Osto L, Morosinotto T, Bassi R.

J Biol Chem. 2007 Mar 23;282(12):8947-58. Epub 2007 Jan 17.

50.

Formate binding near the redox-active tyrosineD in photosystem II: consequences on the properties of tyrD.

Hienerwadel R, Gourion-Arsiquaud S, Ballottari M, Bassi R, Diner BA, Berthomieu C.

Photosynth Res. 2005 Jun;84(1-3):139-44.

PMID:
16049766

Supplemental Content

Loading ...
Support Center