Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 61


A maize polygalacturonase functions as a suppressor of programmed cell death in plants.

He Y, Karre S, Johal GS, Christensen SA, Balint-Kurti P.

BMC Plant Biol. 2019 Jul 15;19(1):310. doi: 10.1186/s12870-019-1897-5.


The plant hypersensitive response: concepts, control and consequences.

Balint-Kurti P.

Mol Plant Pathol. 2019 Aug;20(8):1163-1178. doi: 10.1111/mpp.12821. Epub 2019 Jul 15. Review.


Validation and Characterization of Maize Multiple Disease Resistance QTL.

Martins LB, Rucker E, Thomason W, Wisser RJ, Holland JB, Balint-Kurti P.

G3 (Bethesda). 2019 Sep 4;9(9):2905-2912. doi: 10.1534/g3.119.400195.


Diverse Components of Resistance to Fusarium verticillioides Infection and Fumonisin Contamination in Four Maize Recombinant Inbred Families.

Morales L, Zila CT, Moreta Mejía DE, Montoya Arbelaez M, Balint-Kurti PJ, Holland JB, Nelson RJ.

Toxins (Basel). 2019 Feb 1;11(2). pii: E86. doi: 10.3390/toxins11020086.


A maize cytochrome b-c1 complex subunit protein ZmQCR7 controls variation in the hypersensitive response.

He Y, Kim SB, Balint-Kurti P.

Planta. 2019 May;249(5):1477-1485. doi: 10.1007/s00425-019-03092-8. Epub 2019 Jan 29.


Using Maize Chromosome Segment Substitution Line Populations for the Identification of Loci Associated with Multiple Disease Resistance.

Lopez-Zuniga LO, Wolters P, Davis S, Weldekidan T, Kolkman JM, Nelson R, Hooda KS, Rucker E, Thomason W, Wisser R, Balint-Kurti P.

G3 (Bethesda). 2019 Jan 9;9(1):189-201. doi: 10.1534/g3.118.200866.


Identification of a locus in maize controlling response to a host-selective toxin derived from Cochliobolus heterostrophus, causal agent of southern leaf blight.

Xiaodong X, Olukolu B, Yang Q, Balint-Kurti P.

Theor Appl Genet. 2018 Dec;131(12):2601-2612. doi: 10.1007/s00122-018-3175-6. Epub 2018 Sep 6.


Navigating complexity to breed disease-resistant crops.

Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P.

Nat Rev Genet. 2018 Jan;19(1):21-33. doi: 10.1038/nrg.2017.82. Epub 2017 Nov 7. Review.


A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens.

Yang Q, He Y, Kabahuma M, Chaya T, Kelly A, Borrego E, Bian Y, El Kasmi F, Yang L, Teixeira P, Kolkman J, Nelson R, Kolomiets M, L Dangl J, Wisser R, Caplan J, Li X, Lauter N, Balint-Kurti P.

Nat Genet. 2017 Sep;49(9):1364-1372. doi: 10.1038/ng.3919. Epub 2017 Jul 24.


Fine mapping of a quantitative resistance gene for gray leaf spot of maize (Zea mays L.) derived from teosinte (Z. mays ssp. parviglumis).

Zhang X, Yang Q, Rucker E, Thomason W, Balint-Kurti P.

Theor Appl Genet. 2017 Jun;130(6):1285-1295. doi: 10.1007/s00122-017-2888-2. Epub 2017 Mar 24.


Genetic dissection of the maize (Zea mays L.) MAMP response.

Zhang X, Valdés-López O, Arellano C, Stacey G, Balint-Kurti P.

Theor Appl Genet. 2017 Jun;130(6):1155-1168. doi: 10.1007/s00122-017-2876-6. Epub 2017 Mar 13.


Quantitative Disease Resistance: Dissection and Adoption in Maize.

Yang Q, Balint-Kurti P, Xu M.

Mol Plant. 2017 Mar 6;10(3):402-413. doi: 10.1016/j.molp.2017.02.004. Epub 2017 Feb 21. Review.


Expanding Maize Genetic Resources with Predomestication Alleles: Maize-Teosinte Introgression Populations.

Liu Z, Cook J, Melia-Hancock S, Guill K, Bottoms C, Garcia A, Ott O, Nelson R, Recker J, Balint-Kurti P, Larsson S, Lepak N, Buckler E, Trimble L, Tracy W, McMullen MD, Flint-Garcia SA.

Plant Genome. 2016 Mar;9(1). doi: 10.3835/plantgenome2015.07.0053.


The Genetics of Leaf Flecking in Maize and Its Relationship to Plant Defense and Disease Resistance.

Olukolu BA, Bian Y, De Vries B, Tracy WF, Wisser RJ, Holland JB, Balint-Kurti PJ.

Plant Physiol. 2016 Nov;172(3):1787-1803. Epub 2016 Sep 26.


Semiautomated confocal imaging of fungal pathogenesis on plants: Microscopic analysis of macroscopic specimens.

Minker KR, Biedrzycki ML, Kolagunda A, Rhein S, Perina FJ, Jacobs SS, Moore M, Jamann TM, Yang Q, Nelson R, Balint-Kurti P, Kambhamettu C, Wisser RJ, Caplan JL.

Microsc Res Tech. 2018 Feb;81(2):141-152. doi: 10.1002/jemt.22709. Epub 2016 Jun 25.


Maize Homologs of CCoAOMT and HCT, Two Key Enzymes in Lignin Biosynthesis, Form Complexes with the NLR Rp1 Protein to Modulate the Defense Response.

Wang GF, Balint-Kurti PJ.

Plant Physiol. 2016 Jul;171(3):2166-77. doi: 10.1104/pp.16.00224. Epub 2016 May 10.


A Genome-Wide Association Study for Partial Resistance to Maize Common Rust.

Olukolu BA, Tracy WF, Wisser R, De Vries B, Balint-Kurti PJ.

Phytopathology. 2016 Jul;106(7):745-51. doi: 10.1094/PHYTO-11-15-0305-R. Epub 2016 May 9.


Maize Homologs of Hydroxycinnamoyltransferase, a Key Enzyme in Lignin Biosynthesis, Bind the Nucleotide Binding Leucine-Rich Repeat Rp1 Proteins to Modulate the Defense Response.

Wang GF, He Y, Strauch R, Olukolu BA, Nielsen D, Li X, Balint-Kurti PJ.

Plant Physiol. 2015 Nov;169(3):2230-43. doi: 10.1104/pp.15.00703. Epub 2015 Sep 15.


The genetic basis of flecking and its relationship to disease resistance in the IBM maize mapping population.

Vontimitta V, Olukolu BA, Penning BW, Johal G, Balint-Kurti PJ.

Theor Appl Genet. 2015 Nov;128(11):2331-9. doi: 10.1007/s00122-015-2588-8. Epub 2015 Aug 4.


Cytoplasmic and Nuclear Localizations Are Important for the Hypersensitive Response Conferred by Maize Autoactive Rp1-D21 Protein.

Wang GF, Balint-Kurti PJ.

Mol Plant Microbe Interact. 2015 Sep;28(9):1023-31. doi: 10.1094/MPMI-01-15-0014-R. Epub 2015 Aug 25.


Correction: Molecular and functional analyses of a maize autoactive NB-LRR protein identify precise structural requirements for activity.

Wang GF, Ji J, Ei-Kasmi F, Dangl JL, Johal G, Balint-Kurti PJ.

PLoS Pathog. 2015 Apr 10;11(4):e1004830. doi: 10.1371/journal.ppat.1004830. eCollection 2015 Apr.


QTL mapping using high-throughput sequencing.

Jamann TM, Balint-Kurti PJ, Holland JB.

Methods Mol Biol. 2015;1284:257-85. doi: 10.1007/978-1-4939-2444-8_13. Review.


Molecular and functional analyses of a maize autoactive NB-LRR protein identify precise structural requirements for activity.

Wang GF, Ji J, El-Kasmi F, Dangl JL, Johal G, Balint-Kurti PJ.

PLoS Pathog. 2015 Feb 26;11(2):e1004674. doi: 10.1371/journal.ppat.1004674. eCollection 2015 Feb. Erratum in: PLoS Pathog. 2015 Apr;11(4):e1004830.


New insight into a complex plant-fungal pathogen interaction.

Balint-Kurti PJ, Holland JB.

Nat Genet. 2015 Feb;47(2):101-3. doi: 10.1038/ng.3203.


Limits on the reproducibility of marker associations with southern leaf blight resistance in the maize nested association mapping population.

Bian Y, Yang Q, Balint-Kurti PJ, Wisser RJ, Holland JB.

BMC Genomics. 2014 Dec 5;15:1068. doi: 10.1186/1471-2164-15-1068.


A genome-wide association study of the maize hypersensitive defense response identifies genes that cluster in related pathways.

Olukolu BA, Wang GF, Vontimitta V, Venkata BP, Marla S, Ji J, Gachomo E, Chu K, Negeri A, Benson J, Nelson R, Bradbury P, Nielsen D, Holland JB, Balint-Kurti PJ, Johal G.

PLoS Genet. 2014 Aug 28;10(8):e1004562. doi: 10.1371/journal.pgen.1004562. eCollection 2014 Aug.


Characterization of temperature and light effects on the defense response phenotypes associated with the maize Rp1-D21 autoactive resistance gene.

Negeri A, Wang GF, Benavente L, Kibiti CM, Chaikam V, Johal G, Balint-Kurti P.

BMC Plant Biol. 2013 Jul 26;13:106. doi: 10.1186/1471-2229-13-106.


A connected set of genes associated with programmed cell death implicated in controlling the hypersensitive response in maize.

Olukolu BA, Negeri A, Dhawan R, Venkata BP, Sharma P, Garg A, Gachomo E, Marla S, Chu K, Hasan A, Ji J, Chintamanani S, Green J, Shyu CR, Wisser R, Holland J, Johal G, Balint-Kurti P.

Genetics. 2013 Feb;193(2):609-20. doi: 10.1534/genetics.112.147595. Epub 2012 Dec 5.


PhenoPhyte: a flexible affordable method to quantify 2D phenotypes from imagery.

Green JM, Appel H, Rehrig EM, Harnsomburana J, Chang JF, Balint-Kurti P, Shyu CR.

Plant Methods. 2012 Nov 6;8(1):45. doi: 10.1186/1746-4811-8-45.


Multivariate mixed linear model analysis of longitudinal data: an information-rich statistical technique for analyzing plant disease resistance.

Veturi Y, Kump K, Walsh E, Ott O, Poland J, Kolkman JM, Balint-Kurti PJ, Holland JB, Wisser RJ.

Phytopathology. 2012 Nov;102(11):1016-25. doi: 10.1094/PHYTO-10-11-0268.


Analysis of quantitative disease resistance to southern leaf blight and of multiple disease resistance in maize, using near-isogenic lines.

Belcher AR, Zwonitzer JC, Santa Cruz J, Krakowsky MD, Chung CL, Nelson R, Arellano C, Balint-Kurti PJ.

Theor Appl Genet. 2012 Feb;124(3):433-45. doi: 10.1007/s00122-011-1718-1. Epub 2011 Oct 14.


Use of Mutant-Assisted Gene Identification and Characterization (MAGIC) to identify novel genetic loci that modify the maize hypersensitive response.

Chaikam V, Negeri A, Dhawan R, Puchaka B, Ji J, Chintamanani S, Gachomo EW, Zillmer A, Doran T, Weil C, Balint-Kurti P, Johal G.

Theor Appl Genet. 2011 Oct;123(6):985-97. doi: 10.1007/s00122-011-1641-5. Epub 2011 Jul 27.


Targeted discovery of quantitative trait loci for resistance to northern leaf blight and other diseases of maize.

Chung CL, Poland J, Kump K, Benson J, Longfellow J, Walsh E, Balint-Kurti P, Nelson R.

Theor Appl Genet. 2011 Jul;123(2):307-26. doi: 10.1007/s00122-011-1585-9. Epub 2011 Apr 28.


Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene.

Wisser RJ, Kolkman JM, Patzoldt ME, Holland JB, Yu J, Krakowsky M, Nelson RJ, Balint-Kurti PJ.

Proc Natl Acad Sci U S A. 2011 May 3;108(18):7339-44. doi: 10.1073/pnas.1011739108. Epub 2011 Apr 13.


Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population.

Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB.

Nat Genet. 2011 Feb;43(2):163-8. doi: 10.1038/ng.747. Epub 2011 Jan 9.


Resistance loci affecting distinct stages of fungal pathogenesis: use of introgression lines for QTL mapping and characterization in the maize--Setosphaeria turcica pathosystem.

Chung CL, Longfellow JM, Walsh EK, Kerdieh Z, Van Esbroeck G, Balint-Kurti P, Nelson RJ.

BMC Plant Biol. 2010 Jun 8;10:103. doi: 10.1186/1471-2229-10-103.


Maize leaf epiphytic bacteria diversity patterns are genetically correlated with resistance to fungal pathogen infection.

Balint-Kurti P, Simmons SJ, Blum JE, Ballaré CL, Stapleton AE.

Mol Plant Microbe Interact. 2010 Apr;23(4):473-84. doi: 10.1094/MPMI-23-4-0473.


Identification of a maize locus that modulates the hypersensitive defense response, using mutant-assisted gene identification and characterization.

Chintamanani S, Hulbert SH, Johal GS, Balint-Kurti PJ.

Genetics. 2010 Mar;184(3):813-25. doi: 10.1534/genetics.109.111880. Epub 2010 Feb 22.


Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis.

Coles ND, McMullen MD, Balint-Kurti PJ, Pratt RC, Holland JB.

Genetics. 2010 Mar;184(3):799-812. doi: 10.1534/genetics.109.110304. Epub 2009 Dec 14.


Mapping resistance quantitative trait Loci for three foliar diseases in a maize recombinant inbred line population-evidence for multiple disease resistance?

Zwonitzer JC, Coles ND, Krakowsky MD, Arellano C, Holland JB, McMullen MD, Pratt RC, Balint-Kurti PJ.

Phytopathology. 2010 Jan;100(1):72-9. doi: 10.1094/PHYTO-100-1-0072.


Use of selection with recurrent backcrossing and QTL mapping to identify loci contributing to southern leaf blight resistance in a highly resistant maize line.

Zwonitzer JC, Bubeck DM, Bhattramakki D, Goodman MM, Arellano C, Balint-Kurti PJ.

Theor Appl Genet. 2009 Mar;118(5):911-25. doi: 10.1007/s00122-008-0949-2. Epub 2009 Jan 8.


Shades of gray: the world of quantitative disease resistance.

Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ.

Trends Plant Sci. 2009 Jan;14(1):21-9. doi: 10.1016/j.tplants.2008.10.006. Epub 2008 Dec 4. Review.


Analysis of quantitative trait Loci for resistance to southern leaf blight in juvenile maize.

Balint-Kurti PJ, Carson ML.

Phytopathology. 2006 Mar;96(3):221-5. doi: 10.1094/PHYTO-96-0221.


Identification of quantitative trait Loci for resistance to southern leaf blight and days to anthesis in two maize recombinant inbred line populations.

Balint-Kurti PJ, Zwonitzer JC, Pè ME, Pea G, Lee M, Cardinal AJ.

Phytopathology. 2008 Mar;98(3):315-20. doi: 10.1094/PHYTO-98-3-0315.


The genetic architecture of disease resistance in maize: a synthesis of published studies.

Wisser RJ, Balint-Kurti PJ, Nelson RJ.

Phytopathology. 2006 Feb;96(2):120-9. doi: 10.1094/PHYTO-96-0120.


Identification of quantitative trait Loci for resistance to southern leaf blight and days to anthesis in a maize recombinant inbred line population.

Balint-Kurti PJ, Krakowsky MD, Jines MP, Robertson LA, Molnár TL, Goodman MM, Holl JB.

Phytopathology. 2006 Oct;96(10):1067-71. doi: 10.1094/PHYTO-96-1067.


Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin.

Gao X, Shim WB, Göbel C, Kunze S, Feussner I, Meeley R, Balint-Kurti P, Kolomiets M.

Mol Plant Microbe Interact. 2007 Aug;20(8):922-33.


Precise mapping of quantitative trait loci for resistance to southern leaf blight, caused by Cochliobolus heterostrophus race O, and flowering time using advanced intercross maize lines.

Balint-Kurti PJ, Zwonitzer JC, Wisser RJ, Carson ML, Oropeza-Rosas MA, Holland JB, Szalma SJ.

Genetics. 2007 May;176(1):645-57. Epub 2007 Mar 4.


Mapping resistance to Southern rust in a tropical by temperate maize recombinant inbred topcross population.

Jines MP, Balint-Kurti P, Robertson-Hoyt LA, Molnar T, Holland JB, Goodman MM.

Theor Appl Genet. 2007 Feb;114(4):659-67. Epub 2006 Dec 20.


Supplemental Content

Loading ...
Support Center