Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 48

1.

The carboxy-terminal insert in the Q-loop is needed for functionality of Escherichia coli cytochrome bd-I.

Goojani HG, Konings J, Hakvoort H, Hong S, Gennis RB, Sakamoto J, Lill H, Bald D.

Biochim Biophys Acta Bioenerg. 2020 Jun 1;1861(5-6):148175. doi: 10.1016/j.bbabio.2020.148175. Epub 2020 Feb 12.

PMID:
32061652
2.

Cytochrome bd in Mycobacterium tuberculosis: A respiratory chain protein involved in the defense against antibacterials.

Mascolo L, Bald D.

Prog Biophys Mol Biol. 2019 Nov 15. pii: S0079-6107(19)30201-9. doi: 10.1016/j.pbiomolbio.2019.11.002. [Epub ahead of print] Review.

3.

Isoniazid Bactericidal Activity Involves Electron Transport Chain Perturbation.

Zeng S, Soetaert K, Ravon F, Vandeput M, Bald D, Kauffmann JM, Mathys V, Wattiez R, Fontaine V.

Antimicrob Agents Chemother. 2019 Feb 26;63(3). pii: e01841-18. doi: 10.1128/AAC.01841-18. Print 2019 Mar.

4.

Ionophoric effects of the antitubercular drug bedaquiline.

Hards K, McMillan DGG, Schurig-Briccio LA, Gennis RB, Lill H, Bald D, Cook GM.

Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7326-7331. doi: 10.1073/pnas.1803723115. Epub 2018 Jun 25.

5.

The anti-mycobacterial activity of the cytochrome bcc inhibitor Q203 can be enhanced by small-molecule inhibition of cytochrome bd.

Lu P, Asseri AH, Kremer M, Maaskant J, Ummels R, Lill H, Bald D.

Sci Rep. 2018 Feb 8;8(1):2625. doi: 10.1038/s41598-018-20989-8.

6.

A fluorescence-based reporter for monitoring expression of mycobacterial cytochrome bd in response to antibacterials and during infection.

Boot M, Jim KK, Liu T, Commandeur S, Lu P, Verboom T, Lill H, Bitter W, Bald D.

Sci Rep. 2017 Sep 6;7(1):10665. doi: 10.1038/s41598-017-10944-4.

7.

Targeting Energy Metabolism in Mycobacterium tuberculosis, a New Paradigm in Antimycobacterial Drug Discovery.

Bald D, Villellas C, Lu P, Koul A.

mBio. 2017 Apr 11;8(2). pii: e00272-17. doi: 10.1128/mBio.00272-17. Review.

8.

Cytochrome bd Displays Significant Quinol Peroxidase Activity.

Al-Attar S, Yu Y, Pinkse M, Hoeser J, Friedrich T, Bald D, de Vries S.

Sci Rep. 2016 Jun 9;6:27631. doi: 10.1038/srep27631.

9.

Direct quantitative detection of Doc2b-induced hemifusion in optically trapped membranes.

Brouwer I, Giniatullina A, Laurens N, van Weering JRT, Bald D, Wuite GJL, Groffen AJ.

Nat Commun. 2015 Sep 23;6:8387. doi: 10.1038/ncomms9387.

10.

The cytochrome bd-type quinol oxidase is important for survival of Mycobacterium smegmatis under peroxide and antibiotic-induced stress.

Lu P, Heineke MH, Koul A, Andries K, Cook GM, Lill H, van Spanning R, Bald D.

Sci Rep. 2015 May 27;5:10333. doi: 10.1038/srep10333.

11.

Bactericidal mode of action of bedaquiline.

Hards K, Robson JR, Berney M, Shaw L, Bald D, Koul A, Andries K, Cook GM.

J Antimicrob Chemother. 2015 Jul;70(7):2028-37. doi: 10.1093/jac/dkv054. Epub 2015 Mar 8.

PMID:
25754998
12.

A review on emerging diagnostic assay for viral detection: the case of avian influenza virus.

Shojaei TR, Tabatabaei M, Shawky S, Salleh MA, Bald D.

Mol Biol Rep. 2015 Jan;42(1):187-99. doi: 10.1007/s11033-014-3758-5. Epub 2014 Sep 23. Review.

PMID:
25245956
13.

The ATP synthase inhibitor bedaquiline interferes with small-molecule efflux in Mycobacterium smegmatis.

Lu P, Villellas C, Koul A, Andries K, Lill H, Bald D.

J Antibiot (Tokyo). 2014 Dec;67(12):835-7. doi: 10.1038/ja.2014.74. Epub 2014 Jun 11. No abstract available.

PMID:
24916895
14.

Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism.

Koul A, Vranckx L, Dhar N, Göhlmann HW, Özdemir E, Neefs JM, Schulz M, Lu P, Mørtz E, McKinney JD, Andries K, Bald D.

Nat Commun. 2014 Feb 26;5:3369. doi: 10.1038/ncomms4369.

15.

ATP synthase in mycobacteria: special features and implications for a function as drug target.

Lu P, Lill H, Bald D.

Biochim Biophys Acta. 2014 Jul;1837(7):1208-18. doi: 10.1016/j.bbabio.2014.01.022. Epub 2014 Feb 7. Review.

16.

Advances and strategies in discovery of new antibacterials for combating metabolically resting bacteria.

Bald D, Koul A.

Drug Discov Today. 2013 Mar;18(5-6):250-5. doi: 10.1016/j.drudis.2012.09.007. Epub 2012 Sep 29. Review.

PMID:
23032727
17.

Novel antibiotics targeting respiratory ATP synthesis in Gram-positive pathogenic bacteria.

Balemans W, Vranckx L, Lounis N, Pop O, Guillemont J, Vergauwen K, Mol S, Gilissen R, Motte M, Lançois D, De Bolle M, Bonroy K, Lill H, Andries K, Bald D, Koul A.

Antimicrob Agents Chemother. 2012 Aug;56(8):4131-9. doi: 10.1128/AAC.00273-12. Epub 2012 May 21.

18.

Pyrazinoic acid decreases the proton motive force, respiratory ATP synthesis activity, and cellular ATP levels.

Lu P, Haagsma AC, Pham H, Maaskant JJ, Mol S, Lill H, Bald D.

Antimicrob Agents Chemother. 2011 Nov;55(11):5354-7. doi: 10.1128/AAC.00507-11. Epub 2011 Aug 29.

19.

Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase.

Haagsma AC, Podasca I, Koul A, Andries K, Guillemont J, Lill H, Bald D.

PLoS One. 2011;6(8):e23575. doi: 10.1371/journal.pone.0023575. Epub 2011 Aug 17.

20.

ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.

Haagsma AC, Driessen NN, Hahn MM, Lill H, Bald D.

FEMS Microbiol Lett. 2010 Dec;313(1):68-74. doi: 10.1111/j.1574-6968.2010.02123.x. Epub 2010 Oct 7.

21.

Direct detection of unamplified hepatitis C virus RNA using unmodified gold nanoparticles.

Shawky SM, Bald D, Azzazy HM.

Clin Biochem. 2010 Sep;43(13-14):1163-8. doi: 10.1016/j.clinbiochem.2010.07.001. Epub 2010 Aug 1.

PMID:
20627095
22.

Respiratory ATP synthesis: the new generation of mycobacterial drug targets?

Bald D, Koul A.

FEMS Microbiol Lett. 2010 Jul 1;308(1):1-7. doi: 10.1111/j.1574-6968.2010.01959.x. Epub 2010 Mar 20. Review.

23.

Two-stimuli manipulation of a biological motor.

Ristic Z, Vitali M, Duci A, Goetze C, Kemnitz K, Zuschratter W, Lill H, Bald D.

J Nanobiotechnology. 2009 May 15;7:3. doi: 10.1186/1477-3155-7-3.

24.

Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue.

Haagsma AC, Abdillahi-Ibrahim R, Wagner MJ, Krab K, Vergauwen K, Guillemont J, Andries K, Lill H, Koul A, Bald D.

Antimicrob Agents Chemother. 2009 Mar;53(3):1290-2. doi: 10.1128/AAC.01393-08. Epub 2008 Dec 15.

25.

Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis.

Koul A, Vranckx L, Dendouga N, Balemans W, Van den Wyngaert I, Vergauwen K, Göhlmann HW, Willebrords R, Poncelet A, Guillemont J, Bald D, Andries K.

J Biol Chem. 2008 Sep 12;283(37):25273-80. doi: 10.1074/jbc.M803899200. Epub 2008 Jul 14.

26.

Diarylquinolines target subunit c of mycobacterial ATP synthase.

Koul A, Dendouga N, Vergauwen K, Molenberghs B, Vranckx L, Willebrords R, Ristic Z, Lill H, Dorange I, Guillemont J, Bald D, Andries K.

Nat Chem Biol. 2007 Jun;3(6):323-4. Epub 2007 May 13.

PMID:
17496888
27.

A thermostable enzyme as an experimental platform to study properties of less stable homologues.

Lill H, Hisabori T, Groth G, Bald D.

Protein Eng Des Sel. 2004 Jul;17(7):553-5. Epub 2004 Aug 27.

PMID:
15333775
28.

Significance of the epsilon subunit in the thiol modulation of chloroplast ATP synthase.

Konno H, Suzuki T, Bald D, Yoshida M, Hisabori T.

Biochem Biophys Res Commun. 2004 May 21;318(1):17-24.

PMID:
15110747
29.

Inverse regulation of rotation of F1-ATPase by the mutation at the regulatory region on the gamma subunit of chloroplast ATP synthase.

Ueoka-Nakanishi H, Nakanishi Y, Konno H, Motohashi K, Bald D, Hisabori T.

J Biol Chem. 2004 Apr 16;279(16):16272-7. Epub 2004 Jan 26.

30.

Complete inhibition and partial Re-activation of single F1-ATPase molecules by tentoxin: new properties of the re-activated enzyme.

Pavlova P, Shimabukuro K, Hisabori T, Groth G, Lill H, Bald D.

J Biol Chem. 2004 Mar 12;279(11):9685-8. Epub 2004 Jan 22.

31.

Molecular devices of chloroplast F(1)-ATP synthase for the regulation.

Hisabori T, Konno H, Ichimura H, Strotmann H, Bald D.

Biochim Biophys Acta. 2002 Sep 10;1555(1-3):140-6. Review.

32.

Substitution of a single amino acid switches the tentoxin-resistant thermophilic F1-ATPase into a tentoxin-sensitive enzyme.

Groth G, Hisabori T, Lill H, Bald D.

J Biol Chem. 2002 Jun 7;277(23):20117-9. Epub 2002 Apr 9.

33.

Redox regulation of the rotation of F(1)-ATP synthase.

Bald D, Noji H, Yoshida M, Hirono-Hara Y, Hisabori T.

J Biol Chem. 2001 Oct 26;276(43):39505-7. Epub 2001 Aug 22.

34.

Purine but not pyrimidine nucleotides support rotation of F(1)-ATPase.

Noji H, Bald D, Yasuda R, Itoh H, Yoshida M, Kinosita K Jr.

J Biol Chem. 2001 Jul 6;276(27):25480-6. Epub 2001 Mar 28.

35.

Fe(III) binding to Bacillus PS3 F(1)ATPase, alphabeta subcomplexes and isolated alpha- and beta-subunits.

Contessi S, Bald D, Baeuerlein E, Dabbeni-Sala F, Mavelli I, Lippe G.

Biochem Biophys Res Commun. 2001 Mar;281(5):1266-70.

PMID:
11243872
36.

The role of the DELSEED motif of the beta subunit in rotation of F1-ATPase.

Hara KY, Noji H, Bald D, Yasuda R, Kinosita K Jr, Yoshida M.

J Biol Chem. 2000 May 12;275(19):14260-3.

38.
39.

Epsilon subunit, an endogenous inhibitor of bacterial F(1)-ATPase, also inhibits F(0)F(1)-ATPase.

Kato-Yamada Y, Bald D, Koike M, Motohashi K, Hisabori T, Yoshida M.

J Biol Chem. 1999 Nov 26;274(48):33991-4.

40.

Two-dimensional crystallization on lipid layer: A successful approach for membrane proteins.

Lévy D, Mosser G, Lambert O, Moeck GS, Bald D, Rigaud JL.

J Struct Biol. 1999 Aug;127(1):44-52.

PMID:
10479616
41.
42.

ATP synthesis by F0F1-ATP synthase independent of noncatalytic nucleotide binding sites and insensitive to azide inhibition.

Bald D, Amano T, Muneyuki E, Pitard B, Rigaud JL, Kruip J, Hisabori T, Yoshida M, Shibata M.

J Biol Chem. 1998 Jan 9;273(2):865-70.

43.

Supramolecular architecture of cyanobacterial thylakoid membranes: How is the phycobilisome connected with the photosystems?

Bald D, Kruip J, Rögner M.

Photosynth Res. 1996 Aug;49(2):103-18. doi: 10.1007/BF00117661.

PMID:
24271608
44.

Supramolecular structure of the photosystem II complex from green plants and cyanobacteria.

Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boonstra AF, Barber J, Rögner M.

Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):175-9.

45.

Evidence for the existence of trimeric and monomeric Photosystem I complexes in thylakoid membranes from cyanobacteria.

Kruip J, Bald D, Boekema E, Rögner M.

Photosynth Res. 1994 Jun;40(3):279-86. doi: 10.1007/BF00034777.

PMID:
24309946
46.
47.

Steady-state polarized light spectroscopy of isolated Photosystem I complexes.

van der Lee J, Bald D, Kwa SL, van Grondelle R, Rögner M, Dekker JP.

Photosynth Res. 1993 Mar;35(3):311-21. doi: 10.1007/BF00016562.

PMID:
24318761
48.

Examination of circadian rhythmicity of blood serotonin and platelets in autistic and non-autistic children.

Yuwiler A, Ritvo ER, Bald D, Kipper D, Koper A.

J Autism Child Schizophr. 1971 Oct-Dec;1(4):421-35. No abstract available.

PMID:
5173772

Supplemental Content

Support Center