Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 27

1.

The CD25-binding antibody Daclizumab High-Yield Process has a distinct glycosylation pattern and reduced antibody-dependent cell-mediated cytotoxicity in comparison to Zenapax®.

Ganguly B, Balasa B, Efros L, Hinton PR, Hartman S, Thakur A, Xiong JM, Schmidt B, Robinson RR, Sornasse T, Vexler V, Sheridan JP.

MAbs. 2016 Oct;8(7):1417-1424. Epub 2016 Jul 1.

2.

Elotuzumab enhances natural killer cell activation and myeloma cell killing through interleukin-2 and TNF-╬▒ pathways.

Balasa B, Yun R, Belmar NA, Fox M, Chao DT, Robbins MD, Starling GC, Rice AG.

Cancer Immunol Immunother. 2015 Jan;64(1):61-73. doi: 10.1007/s00262-014-1610-3. Epub 2014 Oct 7.

3.

CCR2 and CCR5 chemokine receptors differentially influence the development of autoimmune diabetes in the NOD mouse.

Solomon M, Balasa B, Sarvetnick N.

Autoimmunity. 2010 Mar;43(2):156-63. doi: 10.3109/08916930903246464.

PMID:
19824873
4.

Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma.

van Rhee F, Szmania SM, Dillon M, van Abbema AM, Li X, Stone MK, Garg TK, Shi J, Moreno-Bost AM, Yun R, Balasa B, Ganguly B, Chao D, Rice AG, Zhan F, Shaughnessy JD Jr, Barlogie B, Yaccoby S, Afar DE.

Mol Cancer Ther. 2009 Sep;8(9):2616-24. doi: 10.1158/1535-7163.MCT-09-0483. Epub 2009 Sep 1.

5.

CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma.

Hsi ED, Steinle R, Balasa B, Szmania S, Draksharapu A, Shum BP, Huseni M, Powers D, Nanisetti A, Zhang Y, Rice AG, van Abbema A, Wong M, Liu G, Zhan F, Dillon M, Chen S, Rhodes S, Fuh F, Tsurushita N, Kumar S, Vexler V, Shaughnessy JD Jr, Barlogie B, van Rhee F, Hussein M, Afar DE, Williams MB.

Clin Cancer Res. 2008 May 1;14(9):2775-84. doi: 10.1158/1078-0432.CCR-07-4246.

6.

Cytokines and IDDM: implications for etiology and therapy.

Balasa B, Sarvetnick N.

Drug News Perspect. 1998 Aug;11(6):356-60.

PMID:
15616624
7.

Coxsackieviral-mediated diabetes: induction requires antigen-presenting cells and is accompanied by phagocytosis of beta cells.

Horwitz MS, Ilic A, Fine C, Balasa B, Sarvetnick N.

Clin Immunol. 2004 Feb;110(2):134-44.

PMID:
15003810
8.

H-2D end confers dominant protection from IL-10-mediated acceleration of autoimmune diabetes in the nonobese diabetic mouse.

La Cava A, Balasa B, Good A, van Gunst K, Jung N, Sarvetnick N.

J Immunol. 2001 Jul 15;167(2):1066-71.

9.

Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse.

Shi FD, Flodstrom M, Balasa B, Kim SH, Van Gunst K, Strominger JL, Wilson SB, Sarvetnick N.

Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6777-82.

10.

Vaccination with glutamic acid decarboxylase plasmid DNA protects mice from spontaneous autoimmune diabetes and B7/CD28 costimulation circumvents that protection.

Balasa B, Boehm BO, Fortnagel A, Karges W, Van Gunst K, Jung N, Camacho SA, Webb SR, Sarvetnick N.

Clin Immunol. 2001 May;99(2):241-52.

PMID:
11318596
11.

A mechanism for IL-10-mediated diabetes in the nonobese diabetic (NOD) mouse: ICAM-1 deficiency blocks accelerated diabetes.

Balasa B, La Cava A, Van Gunst K, Mocnik L, Balakrishna D, Nguyen N, Tucker L, Sarvetnick N.

J Immunol. 2000 Dec 15;165(12):7330-7.

12.

Islet-specific expression of IL-10 promotes diabetes in nonobese diabetic mice independent of Fas, perforin, TNF receptor-1, and TNF receptor-2 molecules.

Balasa B, Van Gunst K, Jung N, Balakrishna D, Santamaria P, Hanafusa T, Itoh N, Sarvetnick N.

J Immunol. 2000 Sep 1;165(5):2841-9.

13.

IL-10 deficiency does not inhibit insulitis and accelerates cyclophosphamide-induced diabetes in the nonobese diabetic mouse.

Balasa B, Van Gunst K, Jung N, Katz JD, Sarvetnick N.

Cell Immunol. 2000 Jun 15;202(2):97-102.

PMID:
10896769
14.

Reply to saoudi et al

Balasa B, Shi FD, Sarvetnick N.

Immunol Today. 2000 Jun;21(6):307-8. No abstract available.

PMID:
10825746
15.

Reply to infante, krolick and wall

Balasa B, Shi FD, Sarvetnick N.

Immunol Today. 2000 Jun;21(6):306. No abstract available.

PMID:
10825744
17.

Is pathogenic humoral autoimmunity a Th1 response? Lessons from (for) myasthenia gravis.

Balasa B, Sarvetnick N.

Immunol Today. 2000 Jan;21(1):19-23. Review. No abstract available.

PMID:
10637554
18.
19.

Differential impact of T cell repertoire diversity in diabetes-prone or -resistant IL-10 transgenic mice.

Balasa B, Lee J, Sarvetnick N.

Cell Immunol. 1999 May 1;193(2):170-8.

PMID:
10222059
20.

IL-10 impacts autoimmune diabetes via a CD8+ T cell pathway circumventing the requirement for CD4+ T and B lymphocytes.

Balasa B, Davies JD, Lee J, Good A, Yeung BT, Sarvetnick N.

J Immunol. 1998 Oct 15;161(8):4420-7.

21.

The Th2 cytokine IL-4 is not required for the progression of antibody-dependent autoimmune myasthenia gravis.

Balasa B, Deng C, Lee J, Christadoss P, Sarvetnick N.

J Immunol. 1998 Sep 15;161(6):2856-62.

22.

CD40 ligand-CD40 interactions are necessary for the initiation of insulitis and diabetes in nonobese diabetic mice.

Balasa B, Krahl T, Patstone G, Lee J, Tisch R, McDevitt HO, Sarvetnick N.

J Immunol. 1997 Nov 1;159(9):4620-7.

PMID:
9379064
23.

Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice.

Balasa B, Deng C, Lee J, Bradley LM, Dalton DK, Christadoss P, Sarvetnick N.

J Exp Med. 1997 Aug 4;186(3):385-91.

24.

The paradoxical effects of interleukin 10 in the immunoregulation of autoimmune diabetes.

Balasa B, Sarvetnick N.

J Autoimmun. 1996 Apr;9(2):283-6. Review.

PMID:
8738975
25.
26.
27.

Supplemental Content

Loading ...
Support Center