Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 19

1.

Cyclodextrin Reduces Cholesterol Crystal-Induced Inflammation by Modulating Complement Activation.

Bakke SS, Aune MH, Niyonzima N, Pilely K, Ryan L, Skjelland M, Garred P, Aukrust P, Halvorsen B, Latz E, Damås JK, Mollnes TE, Espevik T.

J Immunol. 2017 Oct 15;199(8):2910-2920. doi: 10.4049/jimmunol.1700302. Epub 2017 Aug 30.

PMID:
28855312
2.

Loss of perilipin 2 in cultured myotubes enhances lipolysis and redirects the metabolic energy balance from glucose oxidation towards fatty acid oxidation.

Feng YZ, Lund J, Li Y, Knabenes IK, Bakke SS, Kase ET, Lee YK, Kimmel AR, Thoresen GH, Rustan AC, Dalen KT.

J Lipid Res. 2017 Nov;58(11):2147-2161. doi: 10.1194/jlr.M079764. Epub 2017 Aug 19.

PMID:
28822960
3.

Cholesterol Crystals Activate the Lectin Complement Pathway via Ficolin-2 and Mannose-Binding Lectin: Implications for the Progression of Atherosclerosis.

Pilely K, Rosbjerg A, Genster N, Gal P, Pál G, Halvorsen B, Holm S, Aukrust P, Bakke SS, Sporsheim B, Nervik I, Niyonzima N, Bartels ED, Stahl GL, Mollnes TE, Espevik T, Garred P.

J Immunol. 2016 Jun 15;196(12):5064-74. doi: 10.4049/jimmunol.1502595. Epub 2016 May 16.

4.

Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming.

Zimmer S, Grebe A, Bakke SS, Bode N, Halvorsen B, Ulas T, Skjelland M, De Nardo D, Labzin LI, Kerksiek A, Hempel C, Heneka MT, Hawxhurst V, Fitzgerald ML, Trebicka J, Björkhem I, Gustafsson JÅ, Westerterp M, Tall AR, Wright SD, Espevik T, Schultze JL, Nickenig G, Lütjohann D, Latz E.

Sci Transl Med. 2016 Apr 6;8(333):333ra50. doi: 10.1126/scitranslmed.aad6100.

5.

Reconstituted High-Density Lipoprotein Attenuates Cholesterol Crystal-Induced Inflammatory Responses by Reducing Complement Activation.

Niyonzima N, Samstad EO, Aune MH, Ryan L, Bakke SS, Rokstad AM, Wright SD, Damås JK, Mollnes TE, Latz E, Espevik T.

J Immunol. 2015 Jul 1;195(1):257-64. doi: 10.4049/jimmunol.1403044. Epub 2015 May 29.

6.

Primary defects in lipolysis and insulin action in skeletal muscle cells from type 2 diabetic individuals.

Kase ET, Feng YZ, Badin PM, Bakke SS, Laurens C, Coue M, Langin D, Gaster M, Thoresen GH, Rustan AC, Moro C.

Biochim Biophys Acta. 2015 Sep;1851(9):1194-201. doi: 10.1016/j.bbalip.2015.03.005. Epub 2015 Mar 24.

PMID:
25819461
7.

Myotubes from severely obese type 2 diabetic subjects accumulate less lipids and show higher lipolytic rate than myotubes from severely obese non-diabetic subjects.

Bakke SS, Feng YZ, Nikolić N, Kase ET, Moro C, Stensrud C, Damlien L, Ludahl MO, Sandbu R, Solheim BM, Rustan AC, Hjelmesæth J, Thoresen GH, Aas V.

PLoS One. 2015 Mar 19;10(3):e0119556. doi: 10.1371/journal.pone.0119556. eCollection 2015.

8.

Myotubes from lean and severely obese subjects with and without type 2 diabetes respond differently to an in vitro model of exercise.

Feng YZ, Nikolić N, Bakke SS, Kase ET, Guderud K, Hjelmesæth J, Aas V, Rustan AC, Thoresen GH.

Am J Physiol Cell Physiol. 2015 Apr 1;308(7):C548-56. doi: 10.1152/ajpcell.00314.2014. Epub 2015 Jan 21.

9.

Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release.

Samstad EO, Niyonzima N, Nymo S, Aune MH, Ryan L, Bakke SS, Lappegård KT, Brekke OL, Lambris JD, Damås JK, Latz E, Mollnes TE, Espevik T.

J Immunol. 2014 Mar 15;192(6):2837-45. doi: 10.4049/jimmunol.1302484. Epub 2014 Feb 19.

10.

PPARδ activation in human myotubes increases mitochondrial fatty acid oxidative capacity and reduces glucose utilization by a switch in substrate preference.

Feng YZ, Nikolić N, Bakke SS, Boekschoten MV, Kersten S, Kase ET, Rustan AC, Thoresen GH.

Arch Physiol Biochem. 2014 Feb;120(1):12-21. doi: 10.3109/13813455.2013.829105. Epub 2013 Aug 30.

PMID:
23991827
11.

Are cultured human myotubes far from home?

Aas V, Bakke SS, Feng YZ, Kase ET, Jensen J, Bajpeyi S, Thoresen GH, Rustan AC.

Cell Tissue Res. 2013 Dec;354(3):671-82. doi: 10.1007/s00441-013-1655-1. Epub 2013 Jun 8. Review.

PMID:
23749200
12.

Remodeling of oxidative energy metabolism by galactose improves glucose handling and metabolic switching in human skeletal muscle cells.

Kase ET, Nikolić N, Bakke SS, Bogen KK, Aas V, Thoresen GH, Rustan AC.

PLoS One. 2013;8(4):e59972. doi: 10.1371/journal.pone.0059972. Epub 2013 Apr 1.

13.

Palmitic acid follows a different metabolic pathway than oleic acid in human skeletal muscle cells; lower lipolysis rate despite an increased level of adipose triglyceride lipase.

Bakke SS, Moro C, Nikolić N, Hessvik NP, Badin PM, Lauvhaug L, Fredriksson K, Hesselink MK, Boekschoten MV, Kersten S, Gaster M, Thoresen GH, Rustan AC.

Biochim Biophys Acta. 2012 Oct;1821(10):1323-33. doi: 10.1016/j.bbalip.2012.07.001. Epub 2012 Jul 13.

PMID:
22796147
14.

Electrical pulse stimulation of cultured human skeletal muscle cells as an in vitro model of exercise.

Nikolić N, Bakke SS, Kase ET, Rudberg I, Flo Halle I, Rustan AC, Thoresen GH, Aas V.

PLoS One. 2012;7(3):e33203. doi: 10.1371/journal.pone.0033203. Epub 2012 Mar 22. Erratum in: PLoS One. 2013 Mar 4;8(3):null.

15.

Expression of perilipins in human skeletal muscle in vitro and in vivo in relation to diet, exercise and energy balance.

Gjelstad IM, Haugen F, Gulseth HL, Norheim F, Jans A, Bakke SS, Raastad T, Tjønna AE, Wisløff U, Blaak EE, Risérus U, Gaster M, Roche HM, Birkeland KI, Drevon CA.

Arch Physiol Biochem. 2012 Feb;118(1):22-30. doi: 10.3109/13813455.2011.630009. Epub 2011 Nov 25.

PMID:
22117101
16.

The liver X receptor modulator 22(S)-hydroxycholesterol exerts cell-type specific effects on lipid and glucose metabolism.

Hessvik NP, Bakke SS, Smith R, Ravna AW, Sylte I, Rustan AC, Thoresen GH, Kase ET.

J Steroid Biochem Mol Biol. 2012 Feb;128(3-5):154-64. doi: 10.1016/j.jsbmb.2011.10.006. Epub 2011 Oct 25.

PMID:
22051079
17.

Metabolic switching of human skeletal muscle cells in vitro.

Thoresen GH, Hessvik NP, Bakke SS, Aas V, Rustan AC.

Prostaglandins Leukot Essent Fatty Acids. 2011 Nov;85(5):227-34. doi: 10.1016/j.plefa.2011.04.017. Epub 2011 May 5. Review.

PMID:
21549583
18.

Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids.

Corpeleijn E, Hessvik NP, Bakke SS, Levin K, Blaak EE, Thoresen GH, Gaster M, Rustan AC.

Am J Physiol Endocrinol Metab. 2010 Jul;299(1):E14-22. doi: 10.1152/ajpendo.00187.2010. Epub 2010 May 4.

19.

Metabolic switching of human myotubes is improved by n-3 fatty acids.

Hessvik NP, Bakke SS, Fredriksson K, Boekschoten MV, Fjørkenstad A, Koster G, Hesselink MK, Kersten S, Kase ET, Rustan AC, Thoresen GH.

J Lipid Res. 2010 Aug;51(8):2090-104. doi: 10.1194/jlr.M003319. Epub 2010 Apr 2.

Supplemental Content

Loading ...
Support Center