Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 20

1.

Multi-stage Association Analysis of Glioblastoma Gene Expressions with Texture and Spatial Patterns.

Elsheikh SSM, Bakas S, Mulder NJ, Chimusa ER, Davatzikos C, Crimi A.

Brainlesion. 2019;11383:239-250. doi: 10.1007/978-3-030-11723-8_24. Epub 2019 Jan 26.

2.

Imaging signatures of glioblastoma molecular characteristics: A radiogenomics review.

Fathi Kazerooni A, Bakas S, Saligheh Rad H, Davatzikos C.

J Magn Reson Imaging. 2019 Aug 27. doi: 10.1002/jmri.26907. [Epub ahead of print] Review.

PMID:
31456318
3.

Patient-Specific Registration of Pre-operative and Post-recurrence Brain Tumor MRI Scans.

Han X, Bakas S, Kwitt R, Aylward S, Akbari H, Bilello M, Davatzikos C, Niethammer M.

Brainlesion. 2019;11383:105-114. doi: 10.1007/978-3-030-11723-8_10. Epub 2019 Jan 26.

4.

Multi-Institutional Deep Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor Segmentation.

Sheller MJ, Reina GA, Edwards B, Martin J, Bakas S.

Brainlesion. 2019;11383:92-104. doi: 10.1007/978-3-030-11723-8_9. Epub 2019 Jan 26.

5.

Computational staining of unlabelled tissue.

Bakas S, Feldman MD.

Nat Biomed Eng. 2019 Jun;3(6):425-426. doi: 10.1038/s41551-019-0414-3. No abstract available.

PMID:
31175334
6.

Precision diagnostics based on machine learning-derived imaging signatures.

Davatzikos C, Sotiras A, Fan Y, Habes M, Erus G, Rathore S, Bakas S, Chitalia R, Gastounioti A, Kontos D.

Magn Reson Imaging. 2019 May 6. pii: S0730-725X(18)30630-1. doi: 10.1016/j.mri.2019.04.012. [Epub ahead of print]

PMID:
31071473
7.

Evaluation of Indirect Methods for Motion Compensation in 2-D Focal Liver Lesion Contrast-Enhanced Ultrasound (CEUS) Imaging.

Bakas S, Doulgerakis-Kontoudis M, Hunter GJA, Sidhu PS, Makris D, Chatzimichail K.

Ultrasound Med Biol. 2019 Jun;45(6):1380-1396. doi: 10.1016/j.ultrasmedbio.2019.01.023. Epub 2019 Apr 2.

PMID:
30952468
8.

Epidermal Growth Factor Receptor Extracellular Domain Mutations in Glioblastoma Present Opportunities for Clinical Imaging and Therapeutic Development.

Binder ZA, Thorne AH, Bakas S, Wileyto EP, Bilello M, Akbari H, Rathore S, Ha SM, Zhang L, Ferguson CJ, Dahiya S, Bi WL, Reardon DA, Idbaih A, Felsberg J, Hentschel B, Weller M, Bagley SJ, Morrissette JJD, Nasrallah MP, Ma J, Zanca C, Scott AM, Orellana L, Davatzikos C, Furnari FB, O'Rourke DM.

Cancer Cell. 2018 Jul 9;34(1):163-177.e7. doi: 10.1016/j.ccell.2018.06.006.

9.

Brain Cancer Imaging Phenomics Toolkit (brain-CaPTk): An Interactive Platform for Quantitative Analysis of Glioblastoma.

Rathore S, Bakas S, Pati S, Akbari H, Kalarot R, Sridharan P, Rozycki M, Bergman M, Tunc B, Verma R, Bilello M, Davatzikos C.

Brainlesion. 2018;10670:133-145. doi: 10.1007/978-3-319-75238-9_12. Epub 2018 Feb 17.

10.

Brain extraction from normal and pathological images: A joint PCA/Image-Reconstruction approach.

Han X, Kwitt R, Aylward S, Bakas S, Menze B, Asturias A, Vespa P, Van Horn J, Niethammer M.

Neuroimage. 2018 Aug 1;176:431-445. doi: 10.1016/j.neuroimage.2018.04.073. Epub 2018 May 4.

11.

In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature.

Akbari H, Bakas S, Pisapia JM, Nasrallah MP, Rozycki M, Martinez-Lage M, Morrissette JJD, Dahmane N, O'Rourke DM, Davatzikos C.

Neuro Oncol. 2018 Jul 5;20(8):1068-1079. doi: 10.1093/neuonc/noy033.

12.

Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome.

Davatzikos C, Rathore S, Bakas S, Pati S, Bergman M, Kalarot R, Sridharan P, Gastounioti A, Jahani N, Cohen E, Akbari H, Tunc B, Doshi J, Parker D, Hsieh M, Sotiras A, Li H, Ou Y, Doot RK, Bilello M, Fan Y, Shinohara RT, Yushkevich P, Verma R, Kontos D.

J Med Imaging (Bellingham). 2018 Jan;5(1):011018. doi: 10.1117/1.JMI.5.1.011018. Epub 2018 Jan 11.

13.

Use of Fetal Magnetic Resonance Image Analysis and Machine Learning to Predict the Need for Postnatal Cerebrospinal Fluid Diversion in Fetal Ventriculomegaly.

Pisapia JM, Akbari H, Rozycki M, Goldstein H, Bakas S, Rathore S, Moldenhauer JS, Storm PB, Zarnow DM, Anderson RCE, Heuer GG, Davatzikos C.

JAMA Pediatr. 2018 Feb 1;172(2):128-135. doi: 10.1001/jamapediatrics.2017.3993.

14.

Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features.

Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K, Davatzikos C.

Sci Data. 2017 Sep 5;4:170117. doi: 10.1038/sdata.2017.117.

15.

Advanced magnetic resonance imaging in glioblastoma: a review.

Shukla G, Alexander GS, Bakas S, Nikam R, Talekar K, Palmer JD, Shi W.

Chin Clin Oncol. 2017 Aug;6(4):40. doi: 10.21037/cco.2017.06.28. Review.

16.

Segmentation of Gliomas in Pre-operative and Post-operative Multimodal Magnetic Resonance Imaging Volumes Based on a Hybrid Generative-Discriminative Framework.

Zeng K, Bakas S, Sotiras A, Akbari H, Rozycki M, Rathore S, Pati S, Davatzikos C.

Brainlesion. 2016 Oct;10154:184-194. doi: 10.1007/978-3-319-55524-9_18. Epub 2017 Apr 12.

17.

Automatic Identification of the Optimal Reference Frame for Segmentation and Quantification of Focal Liver Lesions in Contrast-Enhanced Ultrasound.

Bakas S, Makris D, Hunter GJA, Fang C, Sidhu PS, Chatzimichail K.

Ultrasound Med Biol. 2017 Oct;43(10):2438-2451. doi: 10.1016/j.ultrasmedbio.2017.06.005. Epub 2017 Jul 10.

PMID:
28705557
18.

In Vivo Detection of EGFRvIII in Glioblastoma via Perfusion Magnetic Resonance Imaging Signature Consistent with Deep Peritumoral Infiltration: The φ-Index.

Bakas S, Akbari H, Pisapia J, Martinez-Lage M, Rozycki M, Rathore S, Dahmane N, O'Rourke DM, Davatzikos C.

Clin Cancer Res. 2017 Aug 15;23(16):4724-4734. doi: 10.1158/1078-0432.CCR-16-1871. Epub 2017 Apr 20.

19.

Correlations of atrial diameter and frontooccipital horn ratio with ventricle size in fetal ventriculomegaly.

Pisapia JM, Rozycki M, Akbari H, Bakas S, Thawani JP, Moldenhauer JS, Storm PB, Zarnow DM, Davatzikos C, Heuer GG.

J Neurosurg Pediatr. 2017 Mar;19(3):300-306. doi: 10.3171/2016.9.PEDS16210. Epub 2017 Jan 6.

PMID:
28059680
20.

GLISTRboost: Combining Multimodal MRI Segmentation, Registration, and Biophysical Tumor Growth Modeling with Gradient Boosting Machines for Glioma Segmentation.

Bakas S, Zeng K, Sotiras A, Rathore S, Akbari H, Gaonkar B, Rozycki M, Pati S, Davatzikos C.

Brainlesion. 2016;9556:144-155. doi: 10.1007/978-3-319-30858-6_1.

Supplemental Content

Support Center