Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 31

1.

PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress.

Ding J, Holzwarth G, Bradford CS, Cooley B, Yoshinaga AS, Patton-Vogt J, Abeliovich H, Penner MH, Bakalinsky AT.

Appl Microbiol Biotechnol. 2015 Oct;99(20):8667-80. doi: 10.1007/s00253-015-6708-9. Epub 2015 Jun 9.

2.

De novo synthesis of a sunscreen compound in vertebrates.

Osborn AR, Almabruk KH, Holzwarth G, Asamizu S, LaDu J, Kean KM, Karplus PA, Tanguay RL, Bakalinsky AT, Mahmud T.

Elife. 2015 May 12;4. doi: 10.7554/eLife.05919.

3.

Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

Ding J, Holzwarth G, Penner MH, Patton-Vogt J, Bakalinsky AT.

FEMS Microbiol Lett. 2015 Jan;362(3):1-7. doi: 10.1093/femsle/fnu042. Epub 2014 Dec 4.

4.

Characterization of a grape class IV chitinase.

Vincenzi S, Bierma J, Wickramasekara SI, Curioni A, Gazzola D, Bakalinsky AT.

J Agric Food Chem. 2014 Jun 18;62(24):5660-8. doi: 10.1021/jf501225g. Epub 2014 Jun 3.

5.

Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement.

Ding J, Bierma J, Smith MR, Poliner E, Wolfe C, Hadduck AN, Zara S, Jirikovic M, van Zee K, Penner MH, Patton-Vogt J, Bakalinsky AT.

Appl Microbiol Biotechnol. 2013 Aug;97(16):7405-16. doi: 10.1007/s00253-013-5071-y. Epub 2013 Jul 5.

PMID:
23828602
6.

Identification of gold nanoparticle-resistant mutants of Saccharomyces cerevisiae suggests a role for respiratory metabolism in mediating toxicity.

Smith MR, Boenzli MG, Hindagolla V, Ding J, Miller JM, Hutchison JE, Greenwood JA, Abeliovich H, Bakalinsky AT.

Appl Environ Microbiol. 2013 Jan;79(2):728-33. doi: 10.1128/AEM.01737-12. Epub 2012 Nov 9.

7.

Quantitative colorimetric assay for total protein applied to the red wine Pinot noir.

Smith MR, Penner MH, Bennett SE, Bakalinsky AT.

J Agric Food Chem. 2011 Jul 13;59(13):6871-6. doi: 10.1021/jf200547u. Epub 2011 Jun 13.

PMID:
21627320
8.

Does aqueous fullerene inhibit the growth of Saccharomyces cerevisiae or Escherichia coli?

Hadduck AN, Hindagolla V, Contreras AE, Li Q, Bakalinsky AT.

Appl Environ Microbiol. 2010 Dec;76(24):8239-42. doi: 10.1128/AEM.01925-10. Epub 2010 Oct 15.

9.

Ethanol-independent biofilm formation by a flor wine yeast strain of Saccharomyces cerevisiae.

Zara S, Gross MK, Zara G, Budroni M, Bakalinsky AT.

Appl Environ Microbiol. 2010 Jun;76(12):4089-91. doi: 10.1128/AEM.00111-10. Epub 2010 Apr 30.

10.

Systematic identification of yeast proteins extracted into model wine during aging on the yeast lees.

Rowe JD, Harbertson JF, Osborne JP, Freitag M, Lim J, Bakalinsky AT.

J Agric Food Chem. 2010 Feb 24;58(4):2337-46. doi: 10.1021/jf903660a.

PMID:
20108898
11.

Caffeine induces macroautophagy and confers a cytocidal effect on food spoilage yeast in combination with benzoic acid.

Winter G, Hazan R, Bakalinsky AT, Abeliovich H.

Autophagy. 2008 Jan;4(1):28-36. Epub 2007 Oct 8.

PMID:
17952024
12.

Genome-wide screen for oxalate-sensitive mutants of Saccharomyces cerevisiae.

Cheng V, Stotz HU, Hippchen K, Bakalinsky AT.

Appl Environ Microbiol. 2007 Sep;73(18):5919-27. Epub 2007 Jul 20.

13.

FLO11-based model for air-liquid interfacial biofilm formation by Saccharomyces cerevisiae.

Zara S, Bakalinsky AT, Zara G, Pirino G, Demontis MA, Budroni M.

Appl Environ Microbiol. 2005 Jun;71(6):2934-9.

14.

Improved anaerobic use of arginine by Saccharomyces cerevisiae.

Martin O, Brandriss MC, Schneider G, Bakalinsky AT.

Appl Environ Microbiol. 2003 Mar;69(3):1623-8.

15.

HSP12 is essential for biofilm formation by a Sardinian wine strain of S. cerevisiae.

Zara S, Antonio Farris G, Budroni M, Bakalinsky AT.

Yeast. 2002 Feb;19(3):269-76.

16.

SSU1 mediates sulphite efflux in Saccharomyces cerevisiae.

Park H, Bakalinsky AT.

Yeast. 2000 Jul;16(10):881-8.

17.

Use of sulfite resistance in Saccharomyces cerevisiae as a dominant selectable marker.

Park H, Lopez NI, Bakalinsky AT.

Curr Genet. 1999 Dec;36(6):339-44.

PMID:
10654087
19.

Bacteria used for the production of yogurt inactivate carcinogens and prevent DNA damage in the colon of rats.

Wollowski I, Ji ST, Bakalinsky AT, Neudecker C, Pool-Zobel BL.

J Nutr. 1999 Jan;129(1):77-82.

PMID:
9915879
20.

Effects of hydrolysis of milk glycerides on the antimutagenicity of a hexane extract of milk.

Nadathur SR, Zhou L, Lowry RR, Bakalinsky AT.

J Dairy Sci. 1998 Mar;81(3):664-71.

21.

Antimutagenic effects of milk fermented by Lactobacillus helveticus L89 and a protease-deficient derivative.

Matar C, Nadathur SS, Bakalinsky AT, Goulet J.

J Dairy Sci. 1997 Sep;80(9):1965-70.

23.

Ethanol production from spent cherry brine.

Park H, Bakalinsky AT.

J Ind Microbiol Biotechnol. 1997 Jul;19(1):12-7.

PMID:
9281848
25.

Palmitic acid is the major fatty acid responsible for significant anti-N-methyl-N'-nitro-N-nitroguanidine (MNNG) activity in yogurt.

Nadathur SR, Carney JR, Gould SJ, Bakalinsky AT.

Mutat Res. 1996 Apr 4;359(3):179-89.

PMID:
8618550
26.

Antimutagenicity of yogurt.

Bakalinsky AT, Nadathur SR, Carney JR, Gould SJ.

Mutat Res. 1996 Feb 19;350(1):199-200.

PMID:
8657181
27.

Antimutagenicity of an acetone extract of yogurt.

Nadathur SR, Gould SJ, Bakalinsky AT.

Mutat Res. 1995 Apr;334(2):213-24.

PMID:
7885375
28.

Antimutagenicity of fermented milk.

Nadathur SR, Gould SJ, Bakalinsky AT.

J Dairy Sci. 1994 Nov;77(11):3287-95.

29.

Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae.

Xu X, Wightman JD, Geller BL, Avram D, Bakalinsky AT.

Curr Genet. 1994 Jun;25(6):488-96.

PMID:
8082198
30.

The chromosomal constitution of wine strains of Saccharomyces cerevisiae.

Bakalinsky AT, Snow R.

Yeast. 1990 Sep-Oct;6(5):367-82.

PMID:
2220073
31.

Conversion of Wine Strains of Saccharomyces cerevisiae to Heterothallism.

Bakalinsky AT, Snow R.

Appl Environ Microbiol. 1990 Apr;56(4):849-57.

Supplemental Content

Loading ...
Support Center