Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 17

1.

A Hinged Signal Peptide Hairpin Enables Tat-Dependent Protein Translocation.

Hamsanathan S, Anthonymuthu TS, Bageshwar UK, Musser SM.

Biophys J. 2017 Dec 19;113(12):2650-2668. doi: 10.1016/j.bpj.2017.09.036.

2.

An Environmentally Friendly Engineered Azotobacter Strain That Replaces a Substantial Amount of Urea Fertilizer while Sustaining the Same Wheat Yield.

Bageshwar UK, Srivastava M, Pardha-Saradhi P, Paul S, Gothandapani S, Jaat RS, Shankar P, Yadav R, Biswas DR, Kumar PA, Padaria JC, Mandal PK, Annapurna K, Das HK.

Appl Environ Microbiol. 2017 Jul 17;83(15). pii: e00590-17. doi: 10.1128/AEM.00590-17. Print 2017 Aug 1.

3.

High Throughput Screen for Escherichia coli Twin Arginine Translocation (Tat) Inhibitors.

Bageshwar UK, VerPlank L, Baker D, Dong W, Hamsanathan S, Whitaker N, Sacchettini JC, Musser SM.

PLoS One. 2016 Feb 22;11(2):e0149659. doi: 10.1371/journal.pone.0149659. eCollection 2016.

4.

Position-dependent effects of polylysine on Sec protein transport.

Liang FC, Bageshwar UK, Musser SM.

J Biol Chem. 2012 Apr 13;287(16):12703-14. doi: 10.1074/jbc.M111.240903. Epub 2012 Feb 24.

5.

Kinetics of precursor interactions with the bacterial Tat translocase detected by real-time FRET.

Whitaker N, Bageshwar UK, Musser SM.

J Biol Chem. 2012 Mar 30;287(14):11252-60. doi: 10.1074/jbc.M111.324525. Epub 2012 Feb 7.

6.

Interconvertibility of lipid- and translocon-bound forms of the bacterial Tat precursor pre-SufI.

Bageshwar UK, Whitaker N, Liang FC, Musser SM.

Mol Microbiol. 2009 Oct;74(1):209-226. doi: 10.1111/j.1365-2958.2009.06862.x. Epub 2009 Sep 2.

7.

Bacterial Sec protein transport is rate-limited by precursor length: a single turnover study.

Liang FC, Bageshwar UK, Musser SM.

Mol Biol Cell. 2009 Oct;20(19):4256-66. doi: 10.1091/mbc.E09-01-0075. Epub 2009 Aug 5.

8.

Two electrical potential-dependent steps are required for transport by the Escherichia coli Tat machinery.

Bageshwar UK, Musser SM.

J Cell Biol. 2007 Oct 8;179(1):87-99. Epub 2007 Oct 1.

9.

Three-dimensional structure of a halotolerant algal carbonic anhydrase predicts halotolerance of a mammalian homolog.

Premkumar L, Greenblatt HM, Bageshwar UK, Savchenko T, Gokhman I, Sussman JL, Zamir A.

Proc Natl Acad Sci U S A. 2005 May 24;102(21):7493-8. Epub 2005 May 13.

10.

Two isoforms of the A subunit of the vacuolar H(+)-ATPase in Lycopersicon esculentum: highly similar proteins but divergent patterns of tissue localization.

Bageshwar UK, Taneja-Bageshwar S, Moharram HM, Binzel ML.

Planta. 2005 Feb;220(4):632-43. Epub 2004 Sep 23.

PMID:
15449061
11.

Natural protein engineering: a uniquely salt-tolerant, but not halophilic, alpha-type carbonic anhydrase from algae proliferating in low- to hyper-saline environments.

Bageshwar UK, Premkumar L, Gokhman I, Savchenko T, Sussman JL, Zamir A.

Protein Eng Des Sel. 2004 Feb;17(2):191-200. Epub 2004 Feb 13.

PMID:
15047915
12.

Identification, cDNA cloning, expression, crystallization and preliminary X-ray analysis of an exceptionally halotolerant carbonic anhydrase from Dunaliella salina.

Premkumar L, Greenblatt HM, Bageshwar UK, Savchenko T, Gokhman I, Zamir A, Sussman JL.

Acta Crystallogr D Biol Crystallogr. 2003 Jun;59(Pt 6):1084-6. Epub 2003 May 23.

PMID:
12777782
13.

An unusual halotolerant alpha-type carbonic anhydrase from the alga Dunaliella salina functionally expressed in Escherichia coli.

Premkumar L, Bageshwar UK, Gokhman I, Zamir A, Sussman JL.

Protein Expr Purif. 2003 Mar;28(1):151-7.

PMID:
12651119
14.

Analysis of upstream activation of the vnfH promoter of Azotobacter vinelandii.

Bageshwar UK, Raina R, Choudhury NR, Das HK.

Can J Microbiol. 1998 May;44(5):405-15.

PMID:
9699296
16.

The Azotobacter vinelandii nifL-like gene: nucleotide sequence analysis and regulation of expression.

Raina R, Bageshwar UK, Das HK.

Mol Gen Genet. 1993 Mar;237(3):400-6.

PMID:
8483455

Supplemental Content

Loading ...
Support Center