Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 59

1.

Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes.

Nottingham AT, Bååth E, Reischke S, Salinas N, Meir P.

Glob Chang Biol. 2019 Mar;25(3):827-838. doi: 10.1111/gcb.14502. Epub 2019 Jan 6.

3.

pH tolerance in freshwater bacterioplankton: trait variation of the community as measured by leucine incorporation.

Bååth E, Kritzberg E.

Appl Environ Microbiol. 2015 Nov;81(21):7411-9. doi: 10.1128/AEM.02236-15. Epub 2015 Aug 14.

4.

Temperature effects on recovery time of bacterial growth after rewetting dry soil.

Maienza A, Bååth E.

Microb Ecol. 2014 Nov;68(4):818-21. doi: 10.1007/s00248-014-0446-x. Epub 2014 Jun 22.

PMID:
24952818
5.

Importance of inoculum properties on the structure and growth of bacterial communities during Recolonisation of humus soil with different pH.

Pettersson M, Bååth E.

Microb Ecol. 2013 Aug;66(2):416-26. doi: 10.1007/s00248-013-0208-1. Epub 2013 Mar 20.

PMID:
23512353
6.

Fungi benefit from two decades of increased nutrient availability in tundra heath soil.

Rinnan R, Michelsen A, Bååth E.

PLoS One. 2013;8(2):e56532. doi: 10.1371/journal.pone.0056532. Epub 2013 Feb 20.

7.

Temperature adaptation of bacterial communities in experimentally warmed forest soils.

Rousk J, Frey SD, Bååth E.

Glob Chang Biol. 2012 Oct;18(10):3252-3258. doi: 10.1111/j.1365-2486.2012.02764.x. Epub 2012 Jul 11.

PMID:
28741822
8.

Effects of water stress, organic amendment and mycorrhizal inoculation on soil microbial community structure and activity during the establishment of two heavy metal-tolerant native plant species.

Fernández DA, Roldán A, Azcón R, Caravaca F, Bååth E.

Microb Ecol. 2012 May;63(4):794-803. doi: 10.1007/s00248-011-9972-y. Epub 2011 Nov 11.

PMID:
22076694
9.

Growth of saprotrophic fungi and bacteria in soil.

Rousk J, Bååth E.

FEMS Microbiol Ecol. 2011 Oct;78(1):17-30. doi: 10.1111/j.1574-6941.2011.01106.x. Epub 2011 Apr 28. Review.

10.

Fungal and bacterial growth responses to N fertilization and pH in the 150-year 'Park Grass' UK grassland experiment.

Rousk J, Brookes PC, Bååth E.

FEMS Microbiol Ecol. 2011 Apr;76(1):89-99. doi: 10.1111/j.1574-6941.2010.01032.x. Epub 2011 Jan 17.

11.

Drying-rewetting cycles affect fungal and bacterial growth differently in an arable soil.

Bapiri A, Bååth E, Rousk J.

Microb Ecol. 2010 Aug;60(2):419-28. doi: 10.1007/s00248-010-9723-5. Epub 2010 Jul 16.

PMID:
20635180
12.

Growth response of the bacterial community to pH in soils differing in pH.

Fernández-Calviño D, Bååth E.

FEMS Microbiol Ecol. 2010 Jul 1;73(1):149-56. doi: 10.1111/j.1574-6941.2010.00873.x. Epub 2010 Mar 30.

13.

Soil bacterial and fungal communities across a pH gradient in an arable soil.

Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N.

ISME J. 2010 Oct;4(10):1340-51. doi: 10.1038/ismej.2010.58. Epub 2010 May 6.

PMID:
20445636
14.

Toxicity of fungicides to natural bacterial communities in wetland water and sediment measured using leucine incorporation and potential denitrification.

Milenkovski S, Bååth E, Lindgren PE, Berglund O.

Ecotoxicology. 2010 Feb;19(2):285-94. doi: 10.1007/s10646-009-0411-5. Epub 2009 Sep 19.

PMID:
19768538
15.

Differential utilization of carbon substrates by bacteria and fungi in tundra soil.

Rinnan R, Bååth E.

Appl Environ Microbiol. 2009 Jun;75(11):3611-20. doi: 10.1128/AEM.02865-08. Epub 2009 Apr 10.

16.

High turnover of fungal hyphae in incubation experiments.

de Vries FT, Bååth E, Kuyper TW, Bloem J.

FEMS Microbiol Ecol. 2009 Mar;67(3):389-96. doi: 10.1111/j.1574-6941.2008.00643.x. Epub 2009 Jan 13.

17.

Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization.

Rousk J, Brookes PC, Bååth E.

Appl Environ Microbiol. 2009 Mar;75(6):1589-96. doi: 10.1128/AEM.02775-08. Epub 2009 Jan 16.

18.

No long-term persistence of bacterial pollution-induced community tolerance in tylosin-polluted soil.

Demoling LA, Bååth E.

Environ Sci Technol. 2008 Sep 15;42(18):6917-21.

PMID:
18853809
19.
20.

Effect of drying and rewetting on bacterial growth rates in soil.

Iovieno P, Bååth E.

FEMS Microbiol Ecol. 2008 Sep;65(3):400-7. doi: 10.1111/j.1574-6941.2008.00524.x. Epub 2008 Jun 9.

21.

Spatial covariation of microbial community composition and polycyclic aromatic hydrocarbon concentration in a creosote-polluted soil.

Törneman N, Yang X, Bååth E, Bengtsson G.

Environ Toxicol Chem. 2008 May;27(5):1039-46. doi: 10.1897/07-440.1.

PMID:
18419193
22.

Use of pollution-induced community tolerance of the bacterial community to detect phenol toxicity in soil.

Demoling LA, Bååth E.

Environ Toxicol Chem. 2008 Feb;27(2):334-40. doi: 10.1897/07-289R.1.

PMID:
18348637
23.

Examining the fungal and bacterial niche overlap using selective inhibitors in soil.

Rousk J, Demoling LA, Bahr A, Bååth E.

FEMS Microbiol Ecol. 2008 Mar;63(3):350-8. doi: 10.1111/j.1574-6941.2008.00440.x. Epub 2008 Jan 16.

24.

Fungal and bacterial growth in soil with plant materials of different C/N ratios.

Rousk J, Bååth E.

FEMS Microbiol Ecol. 2007 Dec;62(3):258-67.

25.

Tolerance (PICT) of the bacterial communities to copper in vineyards soils from Spain.

Díaz-Raviña M, Calvo de Anta R, Bååth E.

J Environ Qual. 2007 Oct 24;36(6):1760-4. Print 2007 Nov-Dec.

PMID:
17965378
26.

Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient.

Nilsson LO, Bååth E, Falkengren-Grerup U, Wallander H.

Oecologia. 2007 Aug;153(2):375-84. Epub 2007 Apr 24.

PMID:
17453252
27.

Compaction of forest soil by logging machinery favours occurrence of prokaryotes.

Schnurr-Pütz S, Bååth E, Guggenberger G, Drake HL, Küsel K.

FEMS Microbiol Ecol. 2006 Dec;58(3):503-16.

29.

Effect of metal-rich sludge amendments on the soil microbial community.

Bååth E, Díaz-Raviña M, Frostegård S, Campbell CD.

Appl Environ Microbiol. 1998 Jan;64(1):238-45.

30.

Comparison of temperature effects on soil respiration and bacterial and fungal growth rates.

Pietikäinen J, Pettersson M, Bååth E.

FEMS Microbiol Ecol. 2005 Mar 1;52(1):49-58. Epub 2004 Nov 18.

31.

Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil.

Bååth E, Díaz-Raviña M, Bakken LR.

Microb Ecol. 2005 Nov;50(4):496-505. Epub 2005 Nov 24.

PMID:
16328661
32.

Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients.

Nilsson LO, Giesler R, Bååth E, Wallander H.

New Phytol. 2005 Feb;165(2):613-22.

33.

Metal toxicity affects fungal and bacterial activities in soil differently.

Rajapaksha RM, Tobor-Kapłon MA, Bååth E.

Appl Environ Microbiol. 2004 May;70(5):2966-73.

34.

The rate of change of a soil bacterial community after liming as a function of temperature.

Pettersson M, Bååth E.

Microb Ecol. 2003 Aug;46(2):177-86.

PMID:
14708743
35.

Temperature-dependent changes in the soil bacterial community in limed and unlimed soil.

Pettersson M, Bååth E.

FEMS Microbiol Ecol. 2003 Jul 1;45(1):13-21. doi: 10.1016/S0168-6496(03)00106-5.

36.

Use of phospholipid fatty acids to detect previous self-heating events in stored peat.

Ranneklev SB, Bååth E.

Appl Environ Microbiol. 2003 Jun;69(6):3532-9.

37.

The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi.

Bååth E.

Microb Ecol. 2003 May;45(4):373-83. Epub 2003 Apr 22.

PMID:
12704558
38.

Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonisation.

Söderberg KH, Olsson PA, Bååth E.

FEMS Microbiol Ecol. 2002 Jun 1;40(3):223-31. doi: 10.1111/j.1574-6941.2002.tb00955.x.

39.

Influence of Initial C/N Ratio on Chemical and Microbial Composition during Long Term Composting of Straw.

Eiland F, Klamer M, Lind AM, Leth M, Bååth E.

Microb Ecol. 2001 Apr;41(3):272-280.

PMID:
11391465
40.

A comparison of sole carbon source utilization patterns and phospholipid fatty acid profiles to detect changes in the root microflora of hydroponically grown crops.

Khalil S, Bååth E, Alsanius B, Englund JE, Sundin P, Gertsson UE, Jensén P.

Can J Microbiol. 2001 Apr;47(4):302-8.

PMID:
11358169
41.

Rapid method of determining factors limiting bacterial growth in soil.

Aldén L, Demoling F, Bååth E.

Appl Environ Microbiol. 2001 Apr;67(4):1830-8.

42.
43.

Structure of the Microbial Communities in Coniferous Forest Soils in Relation to Site Fertility and Stand Development Stage.

Pennanen T, Liski J, Bååth E, Kitunen V V, Uotila J, Westman CJ, Fritze H.

Microb Ecol. 1999 Aug;38(2):168-179.

PMID:
10441709
44.

Responses of the soil microbiota to elevated CO2 in an artificial tropical ecosystem.

Insam H, Bååth E, Berreck M, Frostegård A, Gerzabek MH, Kraft A, Schinner F, Schweiger P, Tschuggnall G.

J Microbiol Methods. 1999 May;36(1-2):45-54.

PMID:
10353799
46.

Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain

Pennanen T, Fritze H, Vanhala P, Kiikkila O, Neuvonen S, Baath E.

Appl Environ Microbiol. 1998 Jun;64(6):2173-80.

47.

Dynamics of a microbial community associated with manure hot spots as revealed by phospholipid fatty acid analyses.

Frostegård A, Petersen SO, Bååth E, Nielsen TH.

Appl Environ Microbiol. 1997 Jun;63(6):2224-31.

48.
49.
50.

Supplemental Content

Support Center