Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 47

1.

Selinexor Overcomes Hypoxia-Induced Drug Resistance in Multiple Myeloma.

Muz B, Azab F, de la Puente P, Landesman Y, Azab AK.

Transl Oncol. 2017 Aug;10(4):632-640. doi: 10.1016/j.tranon.2017.04.010. Epub 2017 Jun 29.

2.

Tariquidar sensitizes multiple myeloma cells to proteasome inhibitors via reduction of hypoxia-induced P-gp-mediated drug resistance.

Muz B, Kusdono HD, Azab F, de la Puente P, Federico C, Fiala M, Vij R, Salama NN, Azab AK.

Leuk Lymphoma. 2017 Dec;58(12):2916-2925. doi: 10.1080/10428194.2017.1319052. Epub 2017 May 16.

3.

The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy.

Muz B, de la Puente P, Azab F, Azab AK.

Hypoxia (Auckl). 2015 Dec 11;3:83-92. eCollection 2015. Review.

4.

MEK inhibitor, TAK-733 reduces proliferation, affects cell cycle and apoptosis, and synergizes with other targeted therapies in multiple myeloma.

de la Puente P, Muz B, Jin A, Azab F, Luderer M, Salama NN, Azab AK.

Blood Cancer J. 2016 Feb 26;6:e399. doi: 10.1038/bcj.2016.7. No abstract available.

5.

A CD138-independent strategy to detect minimal residual disease and circulating tumour cells in multiple myeloma.

Muz B, de la Puente P, Azab F, Luderer MJ, King J, Vij R, Azab AK.

Br J Haematol. 2016 Apr;173(1):70-81. doi: 10.1111/bjh.13927. Epub 2016 Jan 5.

6.

Inhibition of P-Selectin and PSGL-1 Using Humanized Monoclonal Antibodies Increases the Sensitivity of Multiple Myeloma Cells to Bortezomib.

Muz B, Azab F, de la Puente P, Rollins S, Alvarez R, Kawar Z, Azab AK.

Biomed Res Int. 2015;2015:417586. doi: 10.1155/2015/417586. Epub 2015 Oct 11.

7.

Tris DBA palladium overcomes hypoxia-mediated drug resistance in multiple myeloma.

de la Puente P, Azab F, Muz B, Luderer M, Arbiser J, Azab AK.

Leuk Lymphoma. 2016 Jul;57(7):1677-86. doi: 10.3109/10428194.2015.1099645. Epub 2015 Nov 16.

8.

3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma.

de la Puente P, Muz B, Gilson RC, Azab F, Luderer M, King J, Achilefu S, Vij R, Azab AK.

Biomaterials. 2015 Dec;73:70-84. doi: 10.1016/j.biomaterials.2015.09.017. Epub 2015 Sep 12.

9.

Hypoxia promotes stem cell-like phenotype in multiple myeloma cells.

Muz B, de la Puente P, Azab F, Luderer M, Azab AK.

Blood Cancer J. 2014 Dec 5;4:e262. doi: 10.1038/bcj.2014.82. No abstract available.

10.

Hypoxia promotes dissemination and colonization in new bone marrow niches in Waldenström macroglobulinemia.

Muz B, de la Puente P, Azab F, Ghobrial IM, Azab AK.

Mol Cancer Res. 2015 Feb;13(2):263-72. doi: 10.1158/1541-7786.MCR-14-0150. Epub 2014 Sep 17.

11.

The role of hypoxia and exploitation of the hypoxic environment in hematologic malignancies.

Muz B, de la Puente P, Azab F, Luderer M, Azab AK.

Mol Cancer Res. 2014 Oct;12(10):1347-54. doi: 10.1158/1541-7786.MCR-14-0028. Epub 2014 Aug 26. Review.

12.

Targeting survival and cell trafficking in multiple myeloma and Waldenstrom macroglobulinemia using pan-class I PI3K inhibitor, buparlisib.

Sahin I, Azab F, Mishima Y, Moschetta M, Tsang B, Glavey SV, Manier S, Zhang Y, Sacco A, Roccaro AM, Azab AK, Ghobrial IM.

Am J Hematol. 2014 Nov;89(11):1030-6. doi: 10.1002/ajh.23814. Epub 2014 Aug 12.

13.

Molecularly targeted therapies in multiple myeloma.

de la Puente P, Muz B, Azab F, Luderer M, Azab AK.

Leuk Res Treatment. 2014;2014:976567. doi: 10.1155/2014/976567. Epub 2014 Apr 16. Review.

14.

Distinct roles of class I PI3K isoforms in multiple myeloma cell survival and dissemination.

Sahin I, Moschetta M, Mishima Y, Glavey SV, Tsang B, Azab F, Manier S, Zhang Y, Maiso P, Sacco A, Azab AK, Roccaro AM, Ghobrial IM.

Blood Cancer J. 2014 Apr 25;4:e204. doi: 10.1038/bcj.2014.24. No abstract available.

15.

PI3KCA plays a major role in multiple myeloma and its inhibition with BYL719 decreases proliferation, synergizes with other therapies and overcomes stroma-induced resistance.

Azab F, Vali S, Abraham J, Potter N, Muz B, de la Puente P, Fiala M, Paasch J, Sultana Z, Tyagi A, Abbasi T, Vij R, Azab AK.

Br J Haematol. 2014 Apr;165(1):89-101. doi: 10.1111/bjh.12734. Epub 2014 Jan 9.

PMID:
24405121
16.

Novel tumor suppressor function of glucocorticoid-induced TNF receptor GITR in multiple myeloma.

Liu Y, Quang P, Braggio E, Ngo H, Badalian-Very G, Flores L, Zhang Y, Sacco A, Maiso P, Azab AK, Azab F, Carrasco R, Rollins BJ, Roccaro AM, Ghobrial IM.

PLoS One. 2013 Jun 13;8(6):e66982. doi: 10.1371/journal.pone.0066982. Print 2013.

17.

Cell trafficking of endothelial progenitor cells in tumor progression.

de la Puente P, Muz B, Azab F, Azab AK.

Clin Cancer Res. 2013 Jul 1;19(13):3360-8. doi: 10.1158/1078-0432.CCR-13-0462. Epub 2013 May 10. Review.

18.

BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression.

Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, Azab F, Flores LM, Campigotto F, Weller E, Anderson KC, Scadden DT, Ghobrial IM.

J Clin Invest. 2013 Apr;123(4):1542-55. Erratum in: J Clin Invest. 2013 Aug 1;123(8):3635.

19.

Results of a phase 2 trial of the single-agent histone deacetylase inhibitor panobinostat in patients with relapsed/refractory Waldenström macroglobulinemia.

Ghobrial IM, Campigotto F, Murphy TJ, Boswell EN, Banwait R, Azab F, Chuma S, Kunsman J, Donovan A, Masood F, Warren D, Rodig S, Anderson KC, Richardson PG, Weller E, Matous J.

Blood. 2013 Feb 21;121(8):1296-303. doi: 10.1182/blood-2012-06-439307. Epub 2013 Jan 3.

20.

The influence of hypoxia on CML trafficking through modulation of CXCR4 and E-cadherin expression.

Azab AK, Weisberg E, Sahin I, Liu F, Awwad R, Azab F, Liu Q, Griffin JD, Ghobrial IM.

Leukemia. 2013 Apr;27(4):961-4. doi: 10.1038/leu.2012.353. Epub 2012 Dec 5. No abstract available.

PMID:
23212153
21.

Mechanisms of activity of the TORC1 inhibitor everolimus in Waldenstrom macroglobulinemia.

Roccaro AM, Sacco A, Jia X, Banwait R, Maiso P, Azab F, Flores L, Manier S, Azab AK, Ghobrial IM.

Clin Cancer Res. 2012 Dec 15;18(24):6609-22. doi: 10.1158/1078-0432.CCR-12-1532. Epub 2012 Oct 9.

22.

LNA-mediated anti-miR-155 silencing in low-grade B-cell lymphomas.

Zhang Y, Roccaro AM, Rombaoa C, Flores L, Obad S, Fernandes SM, Sacco A, Liu Y, Ngo H, Quang P, Azab AK, Azab F, Maiso P, Reagan M, Brown JR, Thai TH, Kauppinen S, Ghobrial IM.

Blood. 2012 Aug 23;120(8):1678-86. doi: 10.1182/blood-2012-02-410647. Epub 2012 Jul 13.

23.

Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features.

Azab AK, Hu J, Quang P, Azab F, Pitsillides C, Awwad R, Thompson B, Maiso P, Sun JD, Hart CP, Roccaro AM, Sacco A, Ngo HT, Lin CP, Kung AL, Carrasco RD, Vanderkerken K, Ghobrial IM.

Blood. 2012 Jun 14;119(24):5782-94. doi: 10.1182/blood-2011-09-380410. Epub 2012 Mar 6.

24.

P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment.

Azab AK, Quang P, Azab F, Pitsillides C, Thompson B, Chonghaile T, Patton JT, Maiso P, Monrose V, Sacco A, Ngo HT, Flores LM, Lin CP, Magnani JL, Kung AL, Letai A, Carrasco R, Roccaro AM, Ghobrial IM.

Blood. 2012 Feb 9;119(6):1468-78. doi: 10.1182/blood-2011-07-368050. Epub 2011 Nov 16.

25.

Targeting the bone marrow in Waldenstrom macroglobulinemia.

Ghobrial IM, Zhang Y, Liu Y, Ngo H, Azab F, Sacco A, Azab A, Maiso P, Morgan B, Quang P, Issa GC, Leleu X, Roccaro AM.

Clin Lymphoma Myeloma Leuk. 2011 Jun;11 Suppl 1:S65-9. doi: 10.1016/j.clml.2011.03.022. Epub 2011 Apr 30. Review.

26.

Defining the role of TORC1/2 in multiple myeloma.

Maiso P, Liu Y, Morgan B, Azab AK, Ren P, Martin MB, Zhang Y, Liu Y, Sacco A, Ngo H, Azab F, Quang P, Rodig SJ, Lin CP, Roccaro AM, Rommel C, Ghobrial IM.

Blood. 2011 Dec 22;118(26):6860-70. doi: 10.1182/blood-2011-03-342394. Epub 2011 Nov 1.

27.

Eph-B2/ephrin-B2 interaction plays a major role in the adhesion and proliferation of Waldenstrom's macroglobulinemia.

Azab F, Azab AK, Maiso P, Calimeri T, Flores L, Liu Y, Quang P, Roccaro AM, Sacco A, Ngo HT, Zhang Y, Morgan BL, Carrasco RD, Ghobrial IM.

Clin Cancer Res. 2012 Jan 1;18(1):91-104. doi: 10.1158/1078-0432.CCR-11-0111. Epub 2011 Oct 18.

28.

The bone marrow microenvironment in waldenstrom macroglobulinemia.

Ghobrial IM, Maiso P, Azab A, Liu Y, Zhang Y, Issa G, Azab F, Sacco A, Quang P, Ngo H, Roccaro A.

Ther Adv Hematol. 2011 Aug;2(4):267-72. doi: 10.1177/2040620711410096.

29.

FGFR3 is overexpressed waldenstrom macroglobulinemia and its inhibition by Dovitinib induces apoptosis and overcomes stroma-induced proliferation.

Azab AK, Azab F, Quang P, Maiso P, Sacco A, Ngo HT, Liu Y, Zhang Y, Morgan BL, Roccaro AM, Ghobrial IM.

Clin Cancer Res. 2011 Jul 1;17(13):4389-99. doi: 10.1158/1078-0432.CCR-10-2772. Epub 2011 Apr 26.

30.

The bone marrow niche in Waldenström's macroglobulinemia.

Ghobrial IM, Zhang Y, Liu Y, Ngo H, Azab F, Sacco A, Azab A, Maiso P, Morgan B, Quang P, Issa G, Roccaro A.

Clin Lymphoma Myeloma Leuk. 2011 Feb;11(1):118-20. doi: 10.3816/CLML.2011.n.025. Review.

PMID:
21454209
31.

Key role of microRNAs in Waldenström's macroglobulinemia pathogenesis.

Sacco A, Maiso P, Azab A, Azab F, Zhang Y, Liu Y, Ngo HT, Morgan B, Quang P, Issa G, Ghobrial IM, Roccaro AM.

Clin Lymphoma Myeloma Leuk. 2011 Feb;11(1):109-11. doi: 10.3816/CLML.2011.n.022.

PMID:
21454206
32.

Carfilzomib-dependent selective inhibition of the chymotrypsin-like activity of the proteasome leads to antitumor activity in Waldenstrom's Macroglobulinemia.

Sacco A, Aujay M, Morgan B, Azab AK, Maiso P, Liu Y, Zhang Y, Azab F, Ngo HT, Issa GC, Quang P, Roccaro AM, Ghobrial IM.

Clin Cancer Res. 2011 Apr 1;17(7):1753-64. doi: 10.1158/1078-0432.CCR-10-2130. Epub 2011 Feb 25.

33.

microRNA-dependent modulation of histone acetylation in Waldenstrom macroglobulinemia.

Roccaro AM, Sacco A, Jia X, Azab AK, Maiso P, Ngo HT, Azab F, Runnels J, Quang P, Ghobrial IM.

Blood. 2010 Sep 2;116(9):1506-14. doi: 10.1182/blood-2010-01-265686. Epub 2010 Jun 2.

34.

Selective inhibition of chymotrypsin-like activity of the immunoproteasome and constitutive proteasome in Waldenstrom macroglobulinemia.

Roccaro AM, Sacco A, Aujay M, Ngo HT, Azab AK, Azab F, Quang P, Maiso P, Runnels J, Anderson KC, Demo S, Ghobrial IM.

Blood. 2010 May 20;115(20):4051-60. doi: 10.1182/blood-2009-09-243402. Epub 2010 Jan 28.

35.

Clinical and translational studies of a phase II trial of the novel oral Akt inhibitor perifosine in relapsed or relapsed/refractory Waldenstrom's macroglobulinemia.

Ghobrial IM, Roccaro A, Hong F, Weller E, Rubin N, Leduc R, Rourke M, Chuma S, Sacco A, Jia X, Azab F, Azab AK, Rodig S, Warren D, Harris B, Varticovski L, Sportelli P, Leleu X, Anderson KC, Richardson PG.

Clin Cancer Res. 2010 Feb 1;16(3):1033-41. doi: 10.1158/1078-0432.CCR-09-1837. Epub 2010 Jan 26.

36.

Dual targeting of the PI3K/Akt/mTOR pathway as an antitumor strategy in Waldenstrom macroglobulinemia.

Roccaro AM, Sacco A, Husu EN, Pitsillides C, Vesole S, Azab AK, Azab F, Melhem M, Ngo HT, Quang P, Maiso P, Runnels J, Liang MC, Wong KK, Lin C, Ghobrial IM.

Blood. 2010 Jan 21;115(3):559-69. doi: 10.1182/blood-2009-07-235747. Epub 2009 Nov 19.

37.

Src tyrosine kinase regulates adhesion and chemotaxis in Waldenstrom macroglobulinemia.

Ngo HT, Azab AK, Farag M, Jia X, Melhem MM, Runnels J, Roccaro AM, Azab F, Sacco A, Leleu X, Anderson KC, Ghobrial IM.

Clin Cancer Res. 2009 Oct 1;15(19):6035-41. doi: 10.1158/1078-0432.CCR-09-0718. Epub 2009 Sep 15.

38.

RhoA and Rac1 GTPases play major and differential roles in stromal cell-derived factor-1-induced cell adhesion and chemotaxis in multiple myeloma.

Azab AK, Azab F, Blotta S, Pitsillides CM, Thompson B, Runnels JM, Roccaro AM, Ngo HT, Melhem MR, Sacco A, Jia X, Anderson KC, Lin CP, Rollins BJ, Ghobrial IM.

Blood. 2009 Jul 16;114(3):619-29. doi: 10.1182/blood-2009-01-199281. Epub 2009 May 14.

39.

MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma.

Roccaro AM, Sacco A, Thompson B, Leleu X, Azab AK, Azab F, Runnels J, Jia X, Ngo HT, Melhem MR, Lin CP, Ribatti D, Rollins BJ, Witzig TE, Anderson KC, Ghobrial IM.

Blood. 2009 Jun 25;113(26):6669-80. doi: 10.1182/blood-2009-01-198408. Epub 2009 Apr 28.

40.

Role of proteasome inhibition in Waldenström's macroglobulinemia.

Roccaro AM, Sacco A, Leleu X, Azab AK, Azab F, Runnels J, Jia X, Ngo HT, Melhem M, Moreau AS, Ghobrial IM.

Clin Lymphoma Myeloma. 2009 Mar;9(1):94-6. doi: 10.3816/CLM.2009.n.025. Review.

PMID:
19362985
41.

Novel therapeutic agents in Waldenström's macroglobulinemia.

Ghobrial IM, Leleu X, Azab AK, Runnels J, Jia X, Ngo H, Melhem M, Azab F, Sacco A, Quang P, Burwick N, Moreau AS, Husu E, Farag M, Roccaro A.

Clin Lymphoma Myeloma. 2009 Mar;9(1):84-6. doi: 10.3816/CLM.2009.n.022. Review.

42.

Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-kappaB signaling pathways in Waldenstrom's macroglobulinemia.

Braggio E, Keats JJ, Leleu X, Van Wier S, Jimenez-Zepeda VH, Valdez R, Schop RF, Price-Troska T, Henderson K, Sacco A, Azab F, Greipp P, Gertz M, Hayman S, Rajkumar SV, Carpten J, Chesi M, Barrett M, Stewart AK, Dogan A, Bergsagel PL, Ghobrial IM, Fonseca R.

Cancer Res. 2009 Apr 15;69(8):3579-88. doi: 10.1158/0008-5472.CAN-08-3701. Epub 2009 Apr 7.

43.

CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy.

Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X, Jia X, Wright R, Ospina B, Carlson AL, Alt C, Burwick N, Roccaro AM, Ngo HT, Farag M, Melhem MR, Sacco A, Munshi NC, Hideshima T, Rollins BJ, Anderson KC, Kung AL, Lin CP, Ghobrial IM.

Blood. 2009 Apr 30;113(18):4341-51. doi: 10.1182/blood-2008-10-186668. Epub 2009 Jan 12.

44.

microRNA expression in the biology, prognosis, and therapy of Waldenström macroglobulinemia.

Roccaro AM, Sacco A, Chen C, Runnels J, Leleu X, Azab F, Azab AK, Jia X, Ngo HT, Melhem MR, Burwick N, Varticovski L, Novina CD, Rollins BJ, Anderson KC, Ghobrial IM.

Blood. 2009 Apr 30;113(18):4391-402. doi: 10.1182/blood-2008-09-178228. Epub 2008 Dec 12.

45.

SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia.

Ngo HT, Leleu X, Lee J, Jia X, Melhem M, Runnels J, Moreau AS, Burwick N, Azab AK, Roccaro A, Azab F, Sacco A, Farag M, Sackstein R, Ghobrial IM.

Blood. 2008 Jul 1;112(1):150-8. doi: 10.1182/blood-2007-12-129395. Epub 2008 Apr 30.

46.

Targeting NF-kappaB in Waldenstrom macroglobulinemia.

Leleu X, Eeckhoute J, Jia X, Roccaro AM, Moreau AS, Farag M, Sacco A, Ngo HT, Runnels J, Melhem MR, Burwick N, Azab A, Azab F, Hunter Z, Hatjiharissi E, Carrasco DR, Treon SP, Witzig TE, Hideshima T, Brown M, Anderson KC, Ghobrial IM.

Blood. 2008 May 15;111(10):5068-77. doi: 10.1182/blood-2007-09-115170. Epub 2008 Mar 11.

47.

Dual targeting of the proteasome regulates survival and homing in Waldenstrom macroglobulinemia.

Roccaro AM, Leleu X, Sacco A, Jia X, Melhem M, Moreau AS, Ngo HT, Runnels J, Azab A, Azab F, Burwick N, Farag M, Treon SP, Palladino MA, Hideshima T, Chauhan D, Anderson KC, Ghobrial IM.

Blood. 2008 May 1;111(9):4752-63. doi: 10.1182/blood-2007-11-120972. Epub 2008 Mar 3.

Supplemental Content

Support Center