Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 81

1.

Alpha-band Activity Tracks the Zoom Lens of Attention.

Feldmann-Wüstefeld T, Awh E.

J Cogn Neurosci. 2019 Oct 21:1-11. doi: 10.1162/jocn_a_01484. [Epub ahead of print]

PMID:
31633465
2.

Perturbing Neural Representations of Working Memory with Task-irrelevant Interruption.

Hakim N, Feldmann-Wüstefeld T, Awh E, Vogel EK.

J Cogn Neurosci. 2019 Oct 16:1-12. doi: 10.1162/jocn_a_01481. [Epub ahead of print]

PMID:
31617823
3.

"Memory compression" effects in visual working memory are contingent on explicit long-term memory.

Ngiam WXQ, Brissenden JA, Awh E.

J Exp Psychol Gen. 2019 Aug;148(8):1373-1385. doi: 10.1037/xge0000649.

PMID:
31343232
4.

Alpha-band oscillations track the retrieval of precise spatial representations from long-term memory.

Sutterer DW, Foster JJ, Serences JT, Vogel EK, Awh E.

J Neurophysiol. 2019 Aug 1;122(2):539-551. doi: 10.1152/jn.00268.2019. Epub 2019 Jun 12.

PMID:
31188708
5.

Real-time triggering reveals concurrent lapses of attention and working memory.

deBettencourt MT, Keene PA, Awh E, Vogel EK.

Nat Hum Behav. 2019 Aug;3(8):808-816. doi: 10.1038/s41562-019-0606-6. Epub 2019 May 20.

PMID:
31110335
6.

Item-specific delay activity demonstrates concurrent storage of multiple active neural representations in working memory.

Sutterer DW, Foster JJ, Adam KCS, Vogel EK, Awh E.

PLoS Biol. 2019 Apr 26;17(4):e3000239. doi: 10.1371/journal.pbio.3000239. eCollection 2019 Apr.

7.

Dissecting the Neural Focus of Attention Reveals Distinct Processes for Spatial Attention and Object-Based Storage in Visual Working Memory.

Hakim N, Adam KCS, Gunseli E, Awh E, Vogel EK.

Psychol Sci. 2019 Apr;30(4):526-540. doi: 10.1177/0956797619830384. Epub 2019 Feb 28.

PMID:
30817220
8.

Object-based biased competition during covert spatial orienting.

Scolari M, Awh E.

Atten Percept Psychophys. 2019 Jul;81(5):1366-1385. doi: 10.3758/s13414-018-01656-6.

PMID:
30684205
9.

The role of alpha oscillations in spatial attention: limited evidence for a suppression account.

Foster JJ, Awh E.

Curr Opin Psychol. 2018 Nov 8;29:34-40. doi: 10.1016/j.copsyc.2018.11.001. [Epub ahead of print] Review.

PMID:
30472541
10.

Corrigendum to "Clear evidence for item limits in visual working memory" [Cogn. Psychol. 97 (2017) 79-97].

Adam KCS, Vogel EK, Awh E.

Cogn Psychol. 2018 Dec;107:67. doi: 10.1016/j.cogpsych.2018.10.002. Epub 2018 Nov 3. No abstract available.

11.

Benchmarks provide common ground for model development: Reply to Logie (2018) and Vandierendonck (2018).

Oberauer K, Lewandowsky S, Awh E, Brown GDA, Conway A, Cowan N, Donkin C, Farrell S, Hitch GJ, Hurlstone MJ, Ma WJ, Morey CC, Nee DE, Schweppe J, Vergauwe E, Ward G.

Psychol Bull. 2018 Sep;144(9):972-977. doi: 10.1037/bul0000165.

12.

Benchmarks for models of short-term and working memory.

Oberauer K, Lewandowsky S, Awh E, Brown GDA, Conway A, Cowan N, Donkin C, Farrell S, Hitch GJ, Hurlstone MJ, Ma WJ, Morey CC, Nee DE, Schweppe J, Vergauwe E, Ward G.

Psychol Bull. 2018 Sep;144(9):885-958. doi: 10.1037/bul0000153.

PMID:
30148379
13.

Contralateral Delay Activity Indexes Working Memory Storage, Not the Current Focus of Spatial Attention.

Feldmann-Wüstefeld T, Vogel EK, Awh E.

J Cogn Neurosci. 2018 Aug;30(8):1185-1196. doi: 10.1162/jocn_a_01271. Epub 2018 Apr 25.

14.

Chunking in working memory via content-free labels.

Huang L, Awh E.

Sci Rep. 2018 Jan 8;8(1):23. doi: 10.1038/s41598-017-18157-5.

15.

Spatially Selective Alpha Oscillations Reveal Moment-by-Moment Trade-offs between Working Memory and Attention.

van Moorselaar D, Foster JJ, Sutterer DW, Theeuwes J, Olivers CNL, Awh E.

J Cogn Neurosci. 2018 Feb;30(2):256-266. doi: 10.1162/jocn_a_01198. Epub 2017 Oct 17.

16.

Alpha-Band Activity Reveals Spontaneous Representations of Spatial Position in Visual Working Memory.

Foster JJ, Bsales EM, Jaffe RJ, Awh E.

Curr Biol. 2017 Oct 23;27(20):3216-3223.e6. doi: 10.1016/j.cub.2017.09.031. Epub 2017 Oct 12.

17.

Clear evidence for item limits in visual working memory.

Adam KCS, Vogel EK, Awh E.

Cogn Psychol. 2017 Sep;97:79-97. doi: 10.1016/j.cogpsych.2017.07.001. Epub 2017 Jul 19. Erratum in: Cogn Psychol. 2018 Dec;107:67.

18.

Alpha-Band Oscillations Enable Spatially and Temporally Resolved Tracking of Covert Spatial Attention.

Foster JJ, Sutterer DW, Serences JT, Vogel EK, Awh E.

Psychol Sci. 2017 Jul;28(7):929-941. doi: 10.1177/0956797617699167. Epub 2017 May 24.

19.

The capacity to detect synchronous audiovisual events is severely limited: Evidence from mixture modeling.

Olivers CNL, Awh E, Van der Burg E.

J Exp Psychol Hum Percept Perform. 2016 Dec;42(12):2115-2124. doi: 10.1037/xhp0000268.

PMID:
27854458
20.

The role of long-term memory in a test of visual working memory: Proactive facilitation but no proactive interference.

Oberauer K, Awh E, Sutterer DW.

J Exp Psychol Learn Mem Cogn. 2017 Jan;43(1):1-22. doi: 10.1037/xlm0000302. Epub 2016 Sep 29.

21.

Feature-Selective Attentional Modulations in Human Frontoparietal Cortex.

Ester EF, Sutterer DW, Serences JT, Awh E.

J Neurosci. 2016 Aug 3;36(31):8188-99. doi: 10.1523/JNEUROSCI.3935-15.2016.

22.

The contralateral delay activity as a neural measure of visual working memory.

Luria R, Balaban H, Awh E, Vogel EK.

Neurosci Biobehav Rev. 2016 Mar;62:100-8. doi: 10.1016/j.neubiorev.2016.01.003. Epub 2016 Jan 21. Review.

23.

The topography of alpha-band activity tracks the content of spatial working memory.

Foster JJ, Sutterer DW, Serences JT, Vogel EK, Awh E.

J Neurophysiol. 2016 Jan 1;115(1):168-77. doi: 10.1152/jn.00860.2015. Epub 2015 Oct 14.

24.

Retrieval practice enhances the accessibility but not the quality of memory.

Sutterer DW, Awh E.

Psychon Bull Rev. 2016 Jun;23(3):831-41. doi: 10.3758/s13423-015-0937-x.

25.

The role of context in volitional control of feature-based attention.

Belopolsky AV, Awh E.

J Exp Psychol Hum Percept Perform. 2016 Feb;42(2):213-24. doi: 10.1037/xhp0000135. Epub 2015 Sep 7.

26.

Retraction note to: the plateau in mnemonic resolution across large set sizes indicates discrete resource limits in visual working memory.

Awh E.

Atten Percept Psychophys. 2015 Oct;77(7):2519. doi: 10.3758/s13414-015-0980-8. No abstract available.

27.

Attention: feedback focuses a wandering mind.

Awh E, Vogel EK.

Nat Neurosci. 2015 Mar;18(3):327-8. doi: 10.1038/nn.3962. No abstract available.

28.

Working memory delay activity predicts individual differences in cognitive abilities.

Unsworth N, Fukuda K, Awh E, Vogel EK.

J Cogn Neurosci. 2015 May;27(5):853-65. doi: 10.1162/jocn_a_00765. Epub 2014 Dec 1.

29.

Induced α rhythms track the content and quality of visual working memory representations with high temporal precision.

Anderson DE, Serences JT, Vogel EK, Awh E.

J Neurosci. 2014 May 28;34(22):7587-99. doi: 10.1523/JNEUROSCI.0293-14.2014. Retraction in: J Neurosci. 2015 Feb 11;35(6):2838.

30.

Electrophysiological evidence for failures of item individuation in crowded visual displays.

Anderson DE, Ester EF, Klee D, Vogel EK, Awh E.

J Cogn Neurosci. 2014 Oct;26(10):2298-309. doi: 10.1162/jocn_a_00649. Epub 2014 Apr 16. Retraction in: 10.1162/jocn_a_00649. J Cogn Neurosci. 2014 Oct;26(10):2298-2309.

31.

Working memory and fluid intelligence: capacity, attention control, and secondary memory retrieval.

Unsworth N, Fukuda K, Awh E, Vogel EK.

Cogn Psychol. 2014 Jun;71:1-26. doi: 10.1016/j.cogpsych.2014.01.003. Epub 2014 Feb 14.

32.

Factorial comparison of working memory models.

van den Berg R, Awh E, Ma WJ.

Psychol Rev. 2014 Jan;121(1):124-49. doi: 10.1037/a0035234.

33.

The positional-specificity effect reveals a passive-trace contribution to visual short-term memory.

Postle BR, Awh E, Serences JT, Sutterer DW, D'Esposito M.

PLoS One. 2013 Dec 26;8(12):e83483. doi: 10.1371/journal.pone.0083483. eCollection 2013.

34.

Visual crowding cannot be wholly explained by feature pooling.

Ester EF, Klee D, Awh E.

J Exp Psychol Hum Percept Perform. 2014 Jun;40(3):1022-33. doi: 10.1037/a0035377. Epub 2013 Dec 23.

35.

Evidence for a fixed capacity limit in attending multiple locations.

Ester EF, Fukuda K, May LM, Vogel EK, Awh E.

Cogn Affect Behav Neurosci. 2014 Mar;14(1):62-77. doi: 10.3758/s13415-013-0222-2.

36.

Attending multiple items decreases the selectivity of population responses in human primary visual cortex.

Anderson DE, Ester EF, Serences JT, Awh E.

J Neurosci. 2013 May 29;33(22):9273-82. doi: 10.1523/JNEUROSCI.0239-13.2013. Retraction in: J Neurosci. 2016 Apr 13;36(15):4404.

37.

A common discrete resource for visual working memory and visual search.

Anderson DE, Vogel EK, Awh E.

Psychol Sci. 2013 Jun;24(6):929-38. doi: 10.1177/0956797612464380. Epub 2013 Apr 9. Retraction in: Psychol Sci. 2015 Sep;26(9):1527.

38.

A neural measure of precision in visual working memory.

Ester EF, Anderson DE, Serences JT, Awh E.

J Cogn Neurosci. 2013 May;25(5):754-61. doi: 10.1162/jocn_a_00357. Epub 2013 Mar 7.

39.

The capacity of audiovisual integration is limited to one item.

Van der Burg E, Awh E, Olivers CN.

Psychol Sci. 2013 Mar 1;24(3):345-51. doi: 10.1177/0956797612452865. Epub 2013 Feb 6.

40.

Selection and storage of perceptual groups is constrained by a discrete resource in working memory.

Anderson DE, Vogel EK, Awh E.

J Exp Psychol Hum Percept Perform. 2013 Jun;39(3):824-835. doi: 10.1037/a0030094. Epub 2012 Oct 15. Retraction in: J Exp Psychol Hum Percept Perform. 2015 Oct;41(5):1189.

41.

Top-down versus bottom-up attentional control: a failed theoretical dichotomy.

Awh E, Belopolsky AV, Theeuwes J.

Trends Cogn Sci. 2012 Aug;16(8):437-43. doi: 10.1016/j.tics.2012.06.010. Epub 2012 Jul 12. Review.

42.

Neural measures reveal a fixed item limit in subitizing.

Ester EF, Drew T, Klee D, Vogel EK, Awh E.

J Neurosci. 2012 May 23;32(21):7169-77. doi: 10.1523/JNEUROSCI.1218-12.2012.

43.
44.

Increased sensitivity to perceptual interference in adults with attention deficit hyperactivity disorder.

Stevens AA, Maron L, Nigg JT, Cheung D, Ester EF, Awh E.

J Int Neuropsychol Soc. 2012 May;18(3):511-20. doi: 10.1017/S1355617712000033. Epub 2012 Mar 20.

45.

Polymorphisms in the 5-HTTLPR gene mediate storage capacity of visual working memory.

Anderson DE, Bell TA, Awh E.

J Cogn Neurosci. 2012 May;24(5):1069-76. doi: 10.1162/jocn_a_00207. Epub 2012 Feb 14. Retraction in: 10.1162/jocn_a_00207. J Cogn Neurosci. 2012 May;24(5):1069-1076.

46.

Precision in visual working memory reaches a stable plateau when individual item limits are exceeded.

Anderson DE, Vogel EK, Awh E.

J Neurosci. 2011 Jan 19;31(3):1128-38. doi: 10.1523/JNEUROSCI.4125-10.2011. Retraction in: J Neurosci. 2015 Aug 26;35(34):12081.

47.

Quantity, not quality: the relationship between fluid intelligence and working memory capacity.

Fukuda K, Vogel E, Mayr U, Awh E.

Psychon Bull Rev. 2010 Oct;17(5):673-9. doi: 10.3758/17.5.673.

48.

Statistical learning induces discrete shifts in the allocation of working memory resources.

Umemoto A, Scolari M, Vogel EK, Awh E.

J Exp Psychol Hum Percept Perform. 2010 Dec;36(6):1419-29. doi: 10.1037/a0019324.

49.

A bilateral advantage for storage in visual working memory.

Umemoto A, Drew T, Ester EF, Awh E.

Cognition. 2010 Oct;117(1):69-79. doi: 10.1016/j.cognition.2010.07.001. Epub 2010 Jul 24.

50.

Discrete capacity limits in visual working memory.

Fukuda K, Awh E, Vogel EK.

Curr Opin Neurobiol. 2010 Apr;20(2):177-82. doi: 10.1016/j.conb.2010.03.005. Epub 2010 Mar 31. Review.

Supplemental Content

Support Center