Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 15

1.

Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke.

Bae J, Awad LN, Long A, O'Donnell K, Hendron K, Holt KG, Ellis TD, Walsh CJ.

J Exp Biol. 2018 Mar 7;221(Pt 5). pii: jeb168815. doi: 10.1242/jeb.168815.

2.

Dynamic structure of lower limb joint angles during walking post-stroke.

Kempski K, Awad LN, Buchanan TS, Higginson JS, Knarr BA.

J Biomech. 2018 Feb 8;68:1-5. doi: 10.1016/j.jbiomech.2017.12.019. Epub 2017 Dec 15.

PMID:
29325901
3.

Reducing Circumduction and Hip Hiking During Hemiparetic Walking Through Targeted Assistance of the Paretic Limb Using a Soft Robotic Exosuit.

Awad LN, Bae J, Kudzia P, Long A, Hendron K, Holt KG, O╩╝Donnell K, Ellis TD, Walsh CJ.

Am J Phys Med Rehabil. 2017 Oct;96(10 Suppl 1):S157-S164. doi: 10.1097/PHM.0000000000000800.

PMID:
28777105
4.

A soft robotic exosuit improves walking in patients after stroke.

Awad LN, Bae J, O'Donnell K, De Rossi SMM, Hendron K, Sloot LH, Kudzia P, Allen S, Holt KG, Ellis TD, Walsh CJ.

Sci Transl Med. 2017 Jul 26;9(400). pii: eaai9084. doi: 10.1126/scitranslmed.aai9084.

PMID:
28747517
5.
6.

Symmetry of corticomotor input to plantarflexors influences the propulsive strategy used to increase walking speed post-stroke.

Palmer JA, Hsiao H, Awad LN, Binder-Macleod SA.

Clin Neurophysiol. 2016 Mar;127(3):1837-44. doi: 10.1016/j.clinph.2015.12.003. Epub 2015 Dec 12.

7.

Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.

Hsiao H, Awad LN, Palmer JA, Higginson JS, Binder-Macleod SA.

Neurorehabil Neural Repair. 2016 Sep;30(8):743-52. doi: 10.1177/1545968315624780. Epub 2015 Dec 31.

8.

Reducing The Cost of Transport and Increasing Walking Distance After Stroke: A Randomized Controlled Trial on Fast Locomotor Training Combined With Functional Electrical Stimulation.

Awad LN, Reisman DS, Pohlig RT, Binder-Macleod SA.

Neurorehabil Neural Repair. 2016 Aug;30(7):661-70. doi: 10.1177/1545968315619696. Epub 2015 Nov 30.

9.

Changes in Post-Stroke Gait Biomechanics Induced by One Session of Gait Training.

Kesar TM, Reisman DS, Higginson JS, Awad LN, Binder-Macleod SA.

Phys Med Rehabil Int. 2015;2(10). pii: 1072. Epub 2015 Dec 28.

10.

Maximum walking speed is a key determinant of long distance walking function after stroke.

Awad LN, Reisman DS, Wright TR, Roos MA, Binder-Macleod SA.

Top Stroke Rehabil. 2014 Nov-Dec;21(6):502-9. doi: 10.1310/tsr2106-502.

11.

Paretic Propulsion and Trailing Limb Angle Are Key Determinants of Long-Distance Walking Function After Stroke.

Awad LN, Binder-Macleod SA, Pohlig RT, Reisman DS.

Neurorehabil Neural Repair. 2015 Jul;29(6):499-508. doi: 10.1177/1545968314554625. Epub 2014 Nov 10.

12.

Walking speed and step length asymmetry modify the energy cost of walking after stroke.

Awad LN, Palmer JA, Pohlig RT, Binder-Macleod SA, Reisman DS.

Neurorehabil Neural Repair. 2015 Jun;29(5):416-23. doi: 10.1177/1545968314552528. Epub 2014 Oct 5.

13.

Do improvements in balance relate to improvements in long-distance walking function after stroke?

Awad LN, Reisman DS, Binder-Macleod SA.

Stroke Res Treat. 2014;2014:646230. doi: 10.1155/2014/646230. Epub 2014 Jul 10.

14.

Targeting paretic propulsion to improve poststroke walking function: a preliminary study.

Awad LN, Reisman DS, Kesar TM, Binder-Macleod SA.

Arch Phys Med Rehabil. 2014 May;95(5):840-8. doi: 10.1016/j.apmr.2013.12.012. Epub 2013 Dec 28.

15.

Effects of repeated treadmill testing and electrical stimulation on post-stroke gait kinematics.

Awad LN, Kesar TM, Reisman D, Binder-Macleod SA.

Gait Posture. 2013 Jan;37(1):67-71. doi: 10.1016/j.gaitpost.2012.06.001. Epub 2012 Jul 15.

Supplemental Content

Support Center