Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 21

1.

Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific Tolerance in Yeast.

Kuroda K, Hammer SK, Watanabe Y, Montaño López J, Fink GR, Stephanopoulos G, Ueda M, Avalos JL.

Cell Syst. 2019 Nov 11. pii: S2405-4712(19)30382-5. doi: 10.1016/j.cels.2019.10.006. [Epub ahead of print]

PMID:
31734159
2.

Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae.

Lane S, Zhang Y, Yun EJ, Ziolkowski L, Zhang G, Jin YS, Avalos JL.

Biotechnol Bioeng. 2019 Oct 21. doi: 10.1002/bit.27202. [Epub ahead of print]

PMID:
31631318
3.

Xylose utilization stimulates mitochondrial production of isobutanol and 2-methyl-1-butanol in Saccharomyces cerevisiae.

Zhang Y, Lane S, Chen JM, Hammer SK, Luttinger J, Yang L, Jin YS, Avalos JL.

Biotechnol Biofuels. 2019 Sep 20;12:223. doi: 10.1186/s13068-019-1560-2. eCollection 2019.

4.

Light-based control of metabolic flux through assembly of synthetic organelles.

Zhao EM, Suek N, Wilson MZ, Dine E, Pannucci NL, Gitai Z, Avalos JL, Toettcher JE.

Nat Chem Biol. 2019 Jun;15(6):589-597. doi: 10.1038/s41589-019-0284-8. Epub 2019 May 13.

5.

Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds.

Bracha D, Walls MT, Wei MT, Zhu L, Kurian M, Avalos JL, Toettcher JE, Brangwynne CP.

Cell. 2019 Jan 10;176(1-2):407. doi: 10.1016/j.cell.2018.12.026. No abstract available.

PMID:
30633909
6.

Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds.

Bracha D, Walls MT, Wei MT, Zhu L, Kurian M, Avalos JL, Toettcher JE, Brangwynne CP.

Cell. 2018 Nov 29;175(6):1467-1480.e13. doi: 10.1016/j.cell.2018.10.048. Erratum in: Cell. 2019 Jan 10;176(1-2):407.

7.

Metabolic pathway engineering.

Alper HS, Avalos JL.

Synth Syst Biotechnol. 2018 Feb 13;3(1):1-2. doi: 10.1016/j.synbio.2018.01.002. eCollection 2018 Mar. No abstract available.

8.

Current and future modalities of dynamic control in metabolic engineering.

Lalwani MA, Zhao EM, Avalos JL.

Curr Opin Biotechnol. 2018 Aug;52:56-65. doi: 10.1016/j.copbio.2018.02.007. Epub 2018 Mar 22. Review.

PMID:
29574344
9.

Optogenetic regulation of engineered cellular metabolism for microbial chemical production.

Zhao EM, Zhang Y, Mehl J, Park H, Lalwani MA, Toettcher JE, Avalos JL.

Nature. 2018 Mar 29;555(7698):683-687. doi: 10.1038/nature26141. Epub 2018 Mar 21.

10.

Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis.

Hammer SK, Avalos JL.

Metab Eng. 2017 Nov;44:302-312. doi: 10.1016/j.ymben.2017.10.001. Epub 2017 Oct 13.

PMID:
29037781
11.

Harnessing yeast organelles for metabolic engineering.

Hammer SK, Avalos JL.

Nat Chem Biol. 2017 Aug;13(8):823-832. doi: 10.1038/nchembio.2429. Epub 2017 Jul 18. Review.

PMID:
28853733
12.

Traditional and novel tools to probe the mitochondrial metabolism in health and disease.

Zhang Y, Avalos JL.

Wiley Interdiscip Rev Syst Biol Med. 2017 Mar;9(2). doi: 10.1002/wsbm.1373. Epub 2017 Jan 9. Review.

PMID:
28067471
13.

Metabolic engineering: Biosensors get the green light.

Hammer SK, Avalos JL.

Nat Chem Biol. 2016 Oct 18;12(11):894-895. doi: 10.1038/nchembio.2214. No abstract available.

PMID:
27755525
14.

Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols.

Avalos JL, Fink GR, Stephanopoulos G.

Nat Biotechnol. 2013 Apr;31(4):335-41. doi: 10.1038/nbt.2509. Epub 2013 Feb 17.

15.

Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution.

Tao X, Avalos JL, Chen J, MacKinnon R.

Science. 2009 Dec 18;326(5960):1668-74. doi: 10.1126/science.1180310.

16.

Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide.

Hoff KG, Avalos JL, Sens K, Wolberger C.

Structure. 2006 Aug;14(8):1231-40.

17.

The structural basis of sirtuin substrate affinity.

Cosgrove MS, Bever K, Avalos JL, Muhammad S, Zhang X, Wolberger C.

Biochemistry. 2006 Jun 20;45(24):7511-21.

PMID:
16768447
18.
19.

Structural basis for the mechanism and regulation of Sir2 enzymes.

Avalos JL, Boeke JD, Wolberger C.

Mol Cell. 2004 Mar 12;13(5):639-48.

20.

Structure of a Sir2 enzyme bound to an acetylated p53 peptide.

Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C.

Mol Cell. 2002 Sep;10(3):523-35.

21.

A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family.

Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, Avalos JL, Escalante-Semerena JC, Grubmeyer C, Wolberger C, Boeke JD.

Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6658-63.

Supplemental Content

Loading ...
Support Center