Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 18

1.

Coordination of the Cell Wall Integrity and High-Osmolarity Glycerol Pathways in Response to Ethanol Stress in Saccharomyces cerevisiae.

Udom N, Chansongkrow P, Charoensawan V, Auesukaree C.

Appl Environ Microbiol. 2019 Jul 18;85(15). pii: e00551-19. doi: 10.1128/AEM.00551-19. Print 2019 Aug 1.

PMID:
31101611
2.

Enhancement of ethanol production in very high gravity fermentation by reducing fermentation-induced oxidative stress in Saccharomyces cerevisiae.

Burphan T, Tatip S, Limcharoensuk T, Kangboonruang K, Boonchird C, Auesukaree C.

Sci Rep. 2018 Aug 30;8(1):13069. doi: 10.1038/s41598-018-31558-4.

3.

Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation.

Auesukaree C.

J Biosci Bioeng. 2017 Aug;124(2):133-142. doi: 10.1016/j.jbiosc.2017.03.009. Epub 2017 Apr 17. Review.

PMID:
28427825
4.

Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation.

Kitichantaropas Y, Boonchird C, Sugiyama M, Kaneko Y, Harashima S, Auesukaree C.

AMB Express. 2016 Dec;6(1):107. doi: 10.1186/s13568-016-0285-x. Epub 2016 Nov 8.

5.

Erratum for Charoenbhakdi et al., Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses.

Charoenbhakdi S, Dokpikul T, Burphan T, Techo T, Auesukaree C.

Appl Environ Microbiol. 2016 Jul 29;82(16):5057. doi: 10.1128/AEM.01691-16. Print 2016 Aug 15. No abstract available.

6.

Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses.

Charoenbhakdi S, Dokpikul T, Burphan T, Techo T, Auesukaree C.

Appl Environ Microbiol. 2016 May 2;82(10):3121-3130. doi: 10.1128/AEM.00376-16. Print 2016 May 15. Erratum in: Appl Environ Microbiol. 2016 Aug 15;82(16):5057.

7.

Soluble Moringa oleifera leaf extract reduces intracellular cadmium accumulation and oxidative stress in Saccharomyces cerevisiae.

Kerdsomboon K, Tatip S, Kosasih S, Auesukaree C.

J Biosci Bioeng. 2016 May;121(5):543-9. doi: 10.1016/j.jbiosc.2015.09.013. Epub 2015 Dec 8.

PMID:
26675819
8.

Cu/Zn-superoxide dismutase and glutathione are involved in response to oxidative stress induced by protein denaturing effect of alachlor in Saccharomyces cerevisiae.

Rattanawong K, Kerdsomboon K, Auesukaree C.

Free Radic Biol Med. 2015 Dec;89:963-71. doi: 10.1016/j.freeradbiomed.2015.10.421. Epub 2015 Oct 28.

PMID:
26518674
9.

Bioaccumulation and biosorption of Cd(2+) and Zn(2+) by bacteria isolated from a zinc mine in Thailand.

Limcharoensuk T, Sooksawat N, Sumarnrote A, Awutpet T, Kruatrachue M, Pokethitiyook P, Auesukaree C.

Ecotoxicol Environ Saf. 2015 Dec;122:322-30. doi: 10.1016/j.ecoenv.2015.08.013. Epub 2015 Sep 20.

PMID:
26300116
10.

Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits.

Auesukaree C, Koedrith P, Saenpayavai P, Asvarak T, Benjaphokee S, Sugiyama M, Kaneko Y, Harashima S, Boonchird C.

J Biosci Bioeng. 2012 Aug;114(2):144-9. doi: 10.1016/j.jbiosc.2012.03.012. Epub 2012 May 11.

PMID:
22579450
11.

Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol.

Benjaphokee S, Hasegawa D, Yokota D, Asvarak T, Auesukaree C, Sugiyama M, Kaneko Y, Boonchird C, Harashima S.

N Biotechnol. 2012 Feb 15;29(3):379-86. doi: 10.1016/j.nbt.2011.07.002. Epub 2011 Jul 26.

PMID:
21820088
12.

Isolation and characterization of lead-tolerant Ochrobactrum intermedium and its role in enhancing lead accumulation by Eucalyptus camaldulensis.

Waranusantigul P, Lee H, Kruatrachue M, Pokethitiyook P, Auesukaree C.

Chemosphere. 2011 Oct;85(4):584-90. doi: 10.1016/j.chemosphere.2011.06.086. Epub 2011 Jul 20.

PMID:
21764101
13.

CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae.

Benjaphokee S, Koedrith P, Auesukaree C, Asvarak T, Sugiyama M, Kaneko Y, Boonchird C, Harashima S.

N Biotechnol. 2012 Jan 15;29(2):166-76. doi: 10.1016/j.nbt.2011.03.007. Epub 2011 Apr 1.

PMID:
21459167
14.

Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae.

Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, Harashima S.

J Appl Genet. 2009;50(3):301-10. doi: 10.1007/BF03195688.

PMID:
19638689
15.

Ddi1p and Rad23p play a cooperative role as negative regulators in the PHO pathway in Saccharomyces cerevisiae.

Auesukaree C, Fuchigami I, Homma T, Kaneko Y, Harashima S.

Biochem Biophys Res Commun. 2008 Jan 25;365(4):821-5. Epub 2007 Nov 21.

PMID:
18035052
16.
17.

Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae.

Auesukaree C, Homma T, Tochio H, Shirakawa M, Kaneko Y, Harashima S.

J Biol Chem. 2004 Apr 23;279(17):17289-94. Epub 2004 Feb 13.

18.

Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae.

Auesukaree C, Homma T, Kaneko Y, Harashima S.

Biochem Biophys Res Commun. 2003 Jul 11;306(4):843-50.

PMID:
12821119

Supplemental Content

Loading ...
Support Center