Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 13

1.

Proteome-level assessment of origin, prevalence and function of Leucine-Aspartic Acid (LD) motifs.

Alam T, Alazmi M, Naser R, Huser F, Momin AA, Astro V, Hong S, Walkiewicz KW, Canlas CG, Huser R, Ali AJ, Merzaban J, Adamo A, Jaremko M, Jaremko Ł, Bajic VB, Gao X, Arold ST.

Bioinformatics. 2019 Oct 4. pii: btz703. doi: 10.1093/bioinformatics/btz703. [Epub ahead of print]

PMID:
31584626
2.

Epigenetic Control of Endocrine Pancreas Differentiation in vitro: Current Knowledge and Future Perspectives.

Astro V, Adamo A.

Front Cell Dev Biol. 2018 Oct 25;6:141. doi: 10.3389/fcell.2018.00141. eCollection 2018. Review.

3.

A Method to Culture GABAergic Interneurons Derived from the Medial Ganglionic Eminence.

Franchi SA, Macco R, Astro V, Tonoli D, Savino E, Valtorta F, Sala K, Botta M, de Curtis I.

Front Cell Neurosci. 2018 Jan 8;11:423. doi: 10.3389/fncel.2017.00423. eCollection 2017.

4.

Identification of a Protein Network Driving Neuritogenesis of MGE-Derived GABAergic Interneurons.

Franchi SA, Astro V, Macco R, Tonoli D, Barnier JV, Botta M, de Curtis I.

Front Cell Neurosci. 2016 Dec 21;10:289. doi: 10.3389/fncel.2016.00289. eCollection 2016.

5.

Liprin-α1 and ERC1 control cell edge dynamics by promoting focal adhesion turnover.

Astro V, Tonoli D, Chiaretti S, Badanai S, Sala K, Zerial M, de Curtis I.

Sci Rep. 2016 Sep 23;6:33653. doi: 10.1038/srep33653.

6.

Effects of the scaffold proteins liprin-α1, β1 and β2 on invasion by breast cancer cells.

Chiaretti S, Astro V, Chiricozzi E, de Curtis I.

Biol Cell. 2016 Mar;108(3):65-75. doi: 10.1111/boc.201500063. Epub 2016 Feb 5.

PMID:
26663347
7.

Loss of Either Rac1 or Rac3 GTPase Differentially Affects the Behavior of Mutant Mice and the Development of Functional GABAergic Networks.

Pennucci R, Talpo F, Astro V, Montinaro V, Morè L, Cursi M, Castoldi V, Chiaretti S, Bianchi V, Marenna S, Cambiaghi M, Tonoli D, Leocani L, Biella G, D'Adamo P, de Curtis I.

Cereb Cortex. 2016 Feb;26(2):873-890. doi: 10.1093/cercor/bhv274. Epub 2015 Nov 17.

8.

Plasma membrane-associated platforms: dynamic scaffolds that organize membrane-associated events.

Astro V, de Curtis I.

Sci Signal. 2015 Mar 10;8(367):re1. doi: 10.1126/scisignal.aaa3312. Review.

PMID:
25759479
9.

Liprin-α1, ERC1 and LL5 define polarized and dynamic structures that are implicated in cell migration.

Astro V, Chiaretti S, Magistrati E, Fivaz M, de Curtis I.

J Cell Sci. 2014 Sep 1;127(Pt 17):3862-76. doi: 10.1242/jcs.155663. Epub 2014 Jun 30.

10.

Identification of two tyrosine residues required for the intramolecular mechanism implicated in GIT1 activation.

Totaro A, Astro V, Tonoli D, de Curtis I.

PLoS One. 2014 Apr 3;9(4):e93199. doi: 10.1371/journal.pone.0093199. eCollection 2014.

11.

Biochemical and functional characterization of the interaction between liprin-α1 and GIT1: implications for the regulation of cell motility.

Asperti C, Astro V, Pettinato E, Paris S, Bachi A, de Curtis I.

PLoS One. 2011;6(6):e20757. doi: 10.1371/journal.pone.0020757. Epub 2011 Jun 13.

12.

Liprin-α1 regulates breast cancer cell invasion by affecting cell motility, invadopodia and extracellular matrix degradation.

Astro V, Asperti C, Cangi MG, Doglioni C, de Curtis I.

Oncogene. 2011 Apr 14;30(15):1841-9. doi: 10.1038/onc.2010.562. Epub 2010 Dec 13. Erratum in: Oncogene. 2011 Apr 14;30(15):1850. Cangi, G [corrected to Cangi, M G].

PMID:
21151172
13.

Liprin-alpha1 promotes cell spreading on the extracellular matrix by affecting the distribution of activated integrins.

Asperti C, Astro V, Totaro A, Paris S, de Curtis I.

J Cell Sci. 2009 Sep 15;122(Pt 18):3225-32. doi: 10.1242/jcs.054155. Epub 2009 Aug 18.

Supplemental Content

Support Center