Format

Send to

Choose Destination
Nat Ecol Evol. 2018 Feb;2(2):279-287. doi: 10.1038/s41559-017-0434-x. Epub 2018 Jan 15.

Genotypic variability enhances the reproducibility of an ecological study.

Author information

1
Ecotron (Unité Propre de Service 3248), Centre National de la Recherche Scientifique, Campus Baillarguet, Montferrier-sur-Lez, France. alex.milcu@cnrs.fr.
2
Centre d'Ecologie Fonctionnelle et Evolutive, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5175, Université de Montpellier/Université Paul Valéry - École Pratique des Hautes Études, Montpellier, France. alex.milcu@cnrs.fr.
3
Institut de l'Ecologie et des Sciences de l'Environnement de Paris, Université Paris-Est Créteil, Créteil, France.
4
Harvard Forest, Harvard University, Petersham, MA, USA.
5
Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia.
6
Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Dijon, France.
7
Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg August University Göttingen, Göttingen, Germany.
8
Centre d'Ecologie Fonctionnelle et Evolutive, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5175, Université de Montpellier/Université Paul Valéry - École Pratique des Hautes Études, Montpellier, France.
9
Department of Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany.
10
Institut de Recherche pour le Développement, Institut de l'Ecologie et des Sciences de l'Environnement de Paris, Université Pierre et Marie Curie, Paris, France.
11
German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany.
12
Institute of Biology, Leipzig University, Leipzig, Germany.
13
Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, Versailles, France.
14
Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy.
15
Cluster of Excellence on Plant Sciences, Terrestrial Ecology Group, Institute for Zoology, University of Cologne, Cologne, Germany.
16
Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
17
Senckenberg Biodiversität und Klima Forschungszentrum, Frankfurt, Germany.
18
Ecotron (Unité Propre de Service 3248), Centre National de la Recherche Scientifique, Campus Baillarguet, Montferrier-sur-Lez, France.
19
Max Planck Institute for Biogeochemistry, Postfach 100164, Jena, Germany.
20
Leibniz Centre for Agricultural Landscape Research, Institute of Landscape Biogeochemistry, Müncheberg, Germany.
21
Swiss Federal Research Institute, Zürcherstrasse 111, Birmensdorf, Switzerland.
22
Département de Biologie, Ecole Normale Supérieure, Université de recherche Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Service 3194 (Centre de Recherche en Écologie Expérimentale et Prédictive-Ecotron IleDeFrance), Saint-Pierre-lès-Nemours, France.
23
Department of Soil and Water Systems, University of Idaho, Moscow, ID, USA.
24
Institut de l'Ecologie et des Sciences de l'Environnement de Paris, Sorbonne Universités, Paris, France.
25
School of Agriculture, Policy and Development, University of Reading, Reading, UK.
26
Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic.

Abstract

Many scientific disciplines are currently experiencing a 'reproducibility crisis' because numerous scientific findings cannot be repeated consistently. A novel but controversial hypothesis postulates that stringent levels of environmental and biotic standardization in experimental studies reduce reproducibility by amplifying the impacts of laboratory-specific environmental factors not accounted for in study designs. A corollary to this hypothesis is that a deliberate introduction of controlled systematic variability (CSV) in experimental designs may lead to increased reproducibility. To test this hypothesis, we had 14 European laboratories run a simple microcosm experiment using grass (Brachypodium distachyon L.) monocultures and grass and legume (Medicago truncatula Gaertn.) mixtures. Each laboratory introduced environmental and genotypic CSV within and among replicated microcosms established in either growth chambers (with stringent control of environmental conditions) or glasshouses (with more variable environmental conditions). The introduction of genotypic CSV led to 18% lower among-laboratory variability in growth chambers, indicating increased reproducibility, but had no significant effect in glasshouses where reproducibility was generally lower. Environmental CSV had little effect on reproducibility. Although there are multiple causes for the 'reproducibility crisis', deliberately including genetic variability may be a simple solution for increasing the reproducibility of ecological studies performed under stringently controlled environmental conditions.

PMID:
29335575
DOI:
10.1038/s41559-017-0434-x

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center