Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 12

1.

Assembly Reactions of Hepatitis B Capsid Protein into Capsid Nanoparticles Follow a Narrow Path through a Complex Reaction Landscape.

Asor R, Selzer L, Schlicksup CJ, Zhao Z, Zlotnick A, Raviv U.

ACS Nano. 2019 Jul 23;13(7):7610-7626. doi: 10.1021/acsnano.9b00648. Epub 2019 Jun 25.

PMID:
31173689
2.

D+: software for high-resolution hierarchical modeling of solution X-ray scattering from complex structures.

Ginsburg A, Ben-Nun T, Asor R, Shemesh A, Fink L, Tekoah R, Levartovsky Y, Khaykelson D, Dharan R, Fellig A, Raviv U.

J Appl Crystallogr. 2019 Feb 1;52(Pt 1):219-242. doi: 10.1107/S1600576718018046. eCollection 2019 Feb 1.

PMID:
31057345
3.

Structural Differences between the Woodchuck Hepatitis Virus Core Protein in the Dimer and Capsid States Are Consistent with Entropic and Conformational Regulation of Assembly.

Zhao Z, Wang JC, Gonzalez-Gutierrez G, Venkatakrishnan B, Asor R, Khaykelson D, Raviv U, Zlotnick A.

J Virol. 2019 Jun 28;93(14). pii: e00141-19. doi: 10.1128/JVI.00141-19. Print 2019 Jul 15.

PMID:
31043524
4.

Effect of Calcium Ions and Disulfide Bonds on Swelling of Virus Particles.

Asor R, Khaykelson D, Ben-Nun-Shaul O, Oppenheim A, Raviv U.

ACS Omega. 2019 Jan 31;4(1):58-64. doi: 10.1021/acsomega.8b02753. Epub 2019 Jan 2.

5.

Crystallization, Reentrant Melting, and Resolubilization of Virus Nanoparticles.

Asor R, Ben-Nun-Shaul O, Oppenheim A, Raviv U.

ACS Nano. 2017 Oct 24;11(10):9814-9824. doi: 10.1021/acsnano.7b03131. Epub 2017 Oct 2.

6.

Reciprocal Grids: A Hierarchical Algorithm for Computing Solution X-ray Scattering Curves from Supramolecular Complexes at High Resolution.

Ginsburg A, Ben-Nun T, Asor R, Shemesh A, Ringel I, Raviv U.

J Chem Inf Model. 2016 Aug 22;56(8):1518-27. doi: 10.1021/acs.jcim.6b00159. Epub 2016 Jul 29.

PMID:
27410762
7.

Effect of capsid confinement on the chromatin organization of the SV40 minichromosome.

Saper G, Kler S, Asor R, Oppenheim A, Raviv U, Harries D.

Nucleic Acids Res. 2013 Feb 1;41(3):1569-80. doi: 10.1093/nar/gks1270. Epub 2012 Dec 20.

8.

Effect of temperature on the interactions between dipolar membranes.

Szekely P, Asor R, Dvir T, Szekely O, Raviv U.

J Phys Chem B. 2012 Mar 22;116(11):3519-24. doi: 10.1021/jp209157y. Epub 2012 Mar 9.

PMID:
22352342
9.

RNA encapsidation by SV40-derived nanoparticles follows a rapid two-state mechanism.

Kler S, Asor R, Li C, Ginsburg A, Harries D, Oppenheim A, Zlotnick A, Raviv U.

J Am Chem Soc. 2012 May 30;134(21):8823-30. doi: 10.1021/ja2110703. Epub 2012 Mar 13.

10.

Entropic attraction condenses like-charged interfaces composed of self-assembled molecules.

Steiner A, Szekely P, Szekely O, Dvir T, Asor R, Yuval-Naeh N, Keren N, Kesselman E, Danino D, Resh R, Ginsburg A, Guralnik V, Feldblum E, Tamburu C, Peres M, Raviv U.

Langmuir. 2012 Feb 7;28(5):2604-13. doi: 10.1021/la203540p. Epub 2012 Jan 20.

PMID:
22191627
11.

Effect of temperature on the structure of charged membranes.

Szekely P, Dvir T, Asor R, Resh R, Steiner A, Szekely O, Ginsburg A, Mosenkis J, Guralnick V, Dan Y, Wolf T, Tamburu C, Raviv U.

J Phys Chem B. 2011 Dec 15;115(49):14501-6. doi: 10.1021/jp207566n. Epub 2011 Nov 10.

PMID:
21988313
12.

The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes.

Szekely O, Steiner A, Szekely P, Amit E, Asor R, Tamburu C, Raviv U.

Langmuir. 2011 Jun 21;27(12):7419-38. doi: 10.1021/la200264s. Epub 2011 May 20.

PMID:
21598965

Supplemental Content

Support Center